2019春人教版数学六下第五单元《数学广角 鸽巢问题》word单元教案计.doc

上传人:tia****nde 文档编号:5733924 上传时间:2020-02-06 格式:DOC 页数:18 大小:53KB
返回 下载 相关 举报
2019春人教版数学六下第五单元《数学广角 鸽巢问题》word单元教案计.doc_第1页
第1页 / 共18页
2019春人教版数学六下第五单元《数学广角 鸽巢问题》word单元教案计.doc_第2页
第2页 / 共18页
2019春人教版数学六下第五单元《数学广角 鸽巢问题》word单元教案计.doc_第3页
第3页 / 共18页
点击查看更多>>
资源描述
2019春人教版数学六下第五单元数学广角 鸽巢问题word单元教案计一、单元教材分析:本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。二、单元三维目标导向:1、知识与技能:(1)引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。3、情感态度与价值观:(1)体会数学与生活的紧密联系,体验学数学、用数学的乐趣。(2)理解知识的产生过程,受到历史唯物注意的教育。(3)感受数学在实际生活中的作用,培养刻苦钻研、探究新知的良好品质。三、单元教学重难点重点:应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢问题”。难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。四、单元学情分析“鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。能不能将这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。五、教法和学法1、让学生经历“数学证明”的过程。可以鼓励、引导学生借助学具、实物操作或画草图的方式进行“说理”。通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。2、有意识地培养学生的“模型”思想。当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是“鸽巢”,是解决问题的关键。教学时,要引导学生先判断某个问题是否属于用“鸽巢原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。3、要适当把握教学要求。“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。六、单元课时划分:本单元计划课时数:6课时 鸽巢问题1课时 “鸽巢问题”的具体应用1课时 练习课1课时 单元测评 2课时试卷讲评 1课时备 课教 师吴安国、 白林虎、 蒙祥军、平杰授课教师使用时间第 周学习内容鸽巢问题第 一 课时课型教学内容:教材第68-70页例1、例2,及“做一做”的第1题,及第71页练习十三的1-2题。教学目标:1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。难点:找出“鸽巢问题”解决的窍门进行反复推理。教学过程:1 情境导入2、 探究新知1. 教学例1.(课件出示例题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律理解关键词的含义探究证明认识“鸽巢问题”的学习过程来解决问题。(1) 操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。(2) 理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。(3) 探究证明。方法一:用“枚举法”证明。 方法二:用“分解法”证明。把4分解成3个数。由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。方法三:用“假设法”证明。通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。(4) 认识“鸽巢问题” 像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。(5) 归纳总结:鸽巢原理(一):如果把m个物体任意放进n个抽屉里(mn,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。 2、教学例2(课件出示例题2情境图)思考问题:(一)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。为什么呢?(二)如果有8本书会怎样呢?10本书呢?学生通过“探究证明得出结论”的学习过程来解决问题(一)。(1) 探究证明。方法一:用数的分解法证明。把7分解成3个数的和。把7本书放进3个抽屉里,共有如下8种情况:由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。方法二:用假设法证明。把7本书平均分成3份,73=2(本).1(本),若每个抽屉放2本,则还剩1本。如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。(2) 得出结论。通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。学生通过“假设分析法归纳总结”的学习过程来解决问题(二)。(1) 用假设法分析。83=2(本).2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。103=3(本).1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。(2) 归纳总结: 综合上面两种情况,要把a本书放进3个抽屉里,如果a3=b(本).1(本)或a3=b(本).2(本),那么一定有1个抽屉里至少放进(b+1)本书。 鸽巢原理(二):古国把多与kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。三、巩固练习1、完成教材第70页的“做一做”第1题。学生独立思考解答问题,集体交流、纠正。2、完成教材第71页练习十三的1-2题。学生独立思考解答问题,集体交流、纠正。四、课堂总结板书设计:新课标第一网 教学反思:备 课教 师吴安国、 白林虎、 蒙祥军、平杰授课教师使用时间第 周学习内容“鸽巢问题”的具体应用第 二 课时课型教学内容:教材第70-71页例3,及“做一做”的第2题,及第71页练习十三的3-4题。教学目标:1、知识与技能:在了解简单的“鸽巢原理”的基础上,使学生学会用此原理解决简单的实际问题。2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。难点:找出“鸽巢问题”中的“鸽巢”是什么,“鸽巢”有几个,在利用“鸽巢原理”进行反向推理。教学过程: 一、情境导入 二、探究新知1、 教学例3(出示例3的情境图). 出示思考的问题:盒子里有同样大小的红球和篮球各4个,要想摸出的球一定有2个同色的,少要摸出几个球?学生通过“猜测验证分析推理”的学习过程解决问题。(1) 猜测验证。 猜测1:只摸2个球 只要举出一个反例就可以推翻这种猜测。 就能保证这2个球 验 证 如:这两个球正好是一红一蓝时就不能 同色。 满足条件。 猜测2:摸出5个球, 把红、蓝两种颜色看作两个“鸽巢”,因为 肯定有2个球是同 验 证 52=2.1,所以摸出5个球时,至少有3 色的。 个球是同色的,因此摸出5个球是没必要的。 猜测1:摸出3个球, 把红、蓝两种颜色看作两个“鸽巢”,因为 至少有2个球是同 验 证 32=1.1,所以摸出3个球时,至少有3 色的。 2个是同色的。 综上所述,摸出3个球,至少有2个球是同色的。 (2)分析推理。根据“鸽巢原理(一)”推断:要保证有一个抽屉至少有2个球,分的无图个数失少要比抽屉数多1。现在把“颜色种数”看作“抽屉数”,结论就变成了“要保证摸出2个同色的球,摸出的球的个数至少要比颜色种数多1”。因此,要从两种颜色的球中保证摸出2个同色的,至少要摸出3个球。2、 趁热打铁:箱子里有足够多的5种不同颜色的球,最少取出多少个球才能保证其中一定有2个颜色一样的球?学生独立思考解决问题,集体交流。3、 归纳总结:运用“鸽巢原理”解决问题的思路和方法:(1) 分析题意;(2) 把实际问题转化成“鸽巢问题”,弄清“鸽巢”和分放的“鸽子”。(3) 根据“鸽巢原理”推理并解决问题。 三、巩固练习1、完成教材第70页的“做一做”的第2题。(学生独立解答,集体交流。)2、完成教材第71页的练习十三的第3-4题。(学生独立解答,集体交流。)3、课外拓展延伸题:一个布袋里有红色、黑色、蓝色的袜子各8只。每次从布袋里最少要拿出多少只可以保证其中有2双颜色不同的袜子?(袜子不分左右)四、课堂总结板书设计:新课标第一网 教学反思:备 课教 师吴安国、 白林虎、 蒙祥军、平杰授课教师使用时间第 周学习内容练习课第 三 课时课型教学内容:教材71页练习十三的5、6题,及相关的练习题。教学目标:1、知识与技能:进一步熟知“鸽巢原理”的含义,会用“鸽巢原理”熟练解决简单的实际问题。2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。 教学重难点重点:应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢问题”。难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。教学过程: 一、复习导入二、指导练习(一)基础练习题1、填一填: (1)水东小学六年级有30名学生是二月份(按28天计算)出生的,六年级至少有( )名学生的生日是在二月份的同一天。 (2)有3个同学一起练习投篮,如果他们一共投进16个球,那么一定有1个同学至少投进了( )个球。(3)把6只鸡放进5个鸡笼,至少有( )只鸡要放进同1个鸡笼里。(4)某班有个小书架,40个同学可以任意借阅,小书架上至少要有( )本书,才可以保证至少有1个同学能借到2本或2本以上的书。学生独立思考解答,集体交流纠正。2、 解决问题。(1)(易错题)六(1)班有50名同学,至少有多少名同学是同一个月出生的?(2)书籍里混装着3本故事书和5本科技书,要保证一次一定能拿出2本科技书。一次至少要拿出多少本书?(3)把16支铅笔最多放入几个铅笔盒里,可以保证至少有1个铅笔盒里的铅笔不少于6支?(二)拓展延伸题1、把27个球最多放在几个盒子里,可以保证至少有1个盒子里有7个球?教师引导学生分析:盒子数看作抽屉数,如果要使其中1个抽屉里至少有7个球,那么球的个数至少要比抽屉数的(7-1)倍多1个,而(27-1)(7-1)=4.2,因此最多放进4个盒子里,可以保证至少有1个盒子里有7个球。教师引导学生规范解答:2、 一个袋子里装有红、黄、蓝袜子各5只,一次至少取出多少只可以保证每种颜色至少有1只?教师引导学生分析:假设先取5只,全是红的,不符合题意,要继续去;假设再取5只,5只有全是黄的,这时再取一只一定是蓝色的,这样取52+1=11(只)可以保证每种颜色至少有1只。教师引导学生规范解答:3、六(2)班的同学参加一次数学考试,满分为100分,全班最低分是75。已知每人得分都是整数,并且班上至少有3人的得分相同。六(2)班至少有多少名同学?教师引导学生分析:因为最高分是100分,最低分是75分,所以学生可能得到的不同分数有100-745+1=26(种)。教师引导学生规范解答:三、巩固练习完成教材第71页练习十三的5、6题。(学生独立思考解答问题,集体交流、纠正。)四、课堂总结板书设计:新课标第一网 附送:比例的意义和基本性质教学设计教学内容:六年级数学下册第三单元:比例的意义和基本性质【教学目标】知识与技能:使学生理解比例的意义和基本性质,知道比例的各部分名称,能正确判断两个比是否能组成比例。过程与方法:通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。情感态度价值观:感受生活处处有数学,激发学习的兴趣,体会事物之间的相对联系和辩证唯物主义思想,培养探究精神。【教学重难点】教学重点:比例的意义和基本性质。教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。【教学准备】课件。【教学过程】 一、趣味导入,复习铺垫师:一个侦探,只要发现了罪犯的脚印,就可估计出罪犯身材大约的高度,这是为什么呢?像这些生活中的例子,实际上就是用这些有趣的比有着很大的关系。请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。二、引导探究,学习新知1、教学比例的意义。(1)出示P40主题图,学习比例的意义。每面国旗的长和宽的比分别是多少?指名分别写出四面国旗长和宽的比。 5: 2.4:1.6 60:40 15:10每面国旗长和宽的比值有什么关系?(都相等)那么,是否可以用等号将这些比连起来呢?(学生动手写后汇报)5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40像这样表示两个比相等的式子叫做比例。比例也可以写成分数的形式“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比的比值是不是相等。(2)比较“比”和“比例”两个概念。教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。(3)巩固练习。用手势判断下面卡片上的两个比能不能组成比例。 学生判断后,指名说出判断的根据。直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。给出2、3、4、6四个数,让学生组成不同的比例(不要求举全)。对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立就可以。2、教学比例的基本性质(1)教学比例各部分的名称。教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?看看什么叫比例的项、外项、内项。指名让学生指出板书中的比例的外项、内项。(2)教学比例的基本性质。教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:两个外项的积是2.44096两个内项的积是 1.66096 “你发现了什么?”(两个外项的积等于两个内项的积。)板书:2.4401.660 “是不是所有的比例都是这样的呢?”让学生分组计算前面判断过的比例式。通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来? 最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。“如果把比例写成分数形式,比例的基本性质又是怎样的呢?” 学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。3巩固练习。前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。 (1)应用比例的基本性质判断6:15和8:20、0.5 : 0.4 和2 : 2.5能不能组成比例。(2)340 = 206能改写成比例吗?学生讨论交流后指名汇报三、巩固深化,拓展思维1、填空(1)在a:7=9:b中,( )是内项,( )是 外项,ab=( )。(2)在比例里,两个内项的积是18,其中一个外 项是2,另一个外项是( )。(3)如果5a=3b,那么, a:b=( ) b:a=( )四、全课小结,提高认识通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么? 五、板书设计2019春人教版数学六下第四单元比例 比例的意义和基本性质word教学设计表示两个比相等的式子,叫做比例。2.41.6 = 60:40内项-外项-在比例里,两个外项的积等于两个内项的积比例的基本性质人教实验版小学六年级数学下册教学设计 教师:郭 小 慧 学校:姚店小学 时间:xx. 4
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 小学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!