2019年高考物理一轮复习 第六章 动量守恒定律 专题强化七 动力学、动量和能量观点在力学中的应用课件.ppt

上传人:xt****7 文档编号:5703642 上传时间:2020-02-05 格式:PPT 页数:61 大小:2.37MB
返回 下载 相关 举报
2019年高考物理一轮复习 第六章 动量守恒定律 专题强化七 动力学、动量和能量观点在力学中的应用课件.ppt_第1页
第1页 / 共61页
2019年高考物理一轮复习 第六章 动量守恒定律 专题强化七 动力学、动量和能量观点在力学中的应用课件.ppt_第2页
第2页 / 共61页
2019年高考物理一轮复习 第六章 动量守恒定律 专题强化七 动力学、动量和能量观点在力学中的应用课件.ppt_第3页
第3页 / 共61页
点击查看更多>>
资源描述
专题强化七动力学 动量和能量观点在力学中的应用 第六章动量守恒定律 专题解读 1 本专题是力学三大观点在力学中的综合应用 高考对本专题将作为计算题压轴题的形式命题 2 学好本专题 可以帮助同学们熟练应用力学三大观点分析和解决综合问题 3 用到的知识 规律和方法有 动力学方法 牛顿运动定律 运动学基本规律 动量观点 动量定理和动量守恒定律 能量观点 动能定理 机械能守恒定律和能量守恒定律 内容索引 命题点一碰撞类问题的综合分析 命题点二多运动过程问题的综合分析 课时作业 命题点三滑块 木板模型问题 1 1 命题点一碰撞类问题的综合分析 1 解动力学问题的三个基本观点 1 力的观点 运用牛顿运动定律结合运动学知识解题 可处理匀变速运动问题 2 能量观点 用动能定理和能量守恒观点解题 可处理非匀变速运动问题 3 动量观点 用动量守恒观点解题 可处理非匀变速运动问题 但综合题的解法并非孤立的 而应综合利用上述三种观点的多个规律 才能顺利求解 2 力学规律的选用原则 1 如果要列出各物理量在某一时刻的关系式 可用牛顿第二定律 2 研究某一物体受到力的持续作用发生运动状态改变时 一般用动量定理 涉及时间的问题 或动能定理 涉及位移的问题 去解决问题 3 若研究的对象为一物体系统 且它们之间有相互作用 一般用两个守恒定律去解决问题 但需注意所研究的问题是否满足守恒的条件 4 在涉及相对位移问题时则优先考虑能量守恒定律 利用系统克服摩擦力所做的总功等于系统机械能的减少量 即转变为系统内能的量 5 在涉及碰撞 爆炸 打击 绳绷紧等物理现象时 需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换 这种问题由于作用时间都极短 因此动量守恒定律一般能派上大用场 2016 全国 35 2 如图所示 水平地面上有两个静止的小物块a和b 其连线与墙垂直 a和b相距l b与墙之间也相距l a的质量为m b的质量为m 两物块与地面间的动摩擦因数均相同 现使a以初速度v0向右滑动 此后a与b发生弹性碰撞 但b没有与墙发生碰撞 重力加速度大小为g 求物块与地面间的动摩擦因数满足的条件 例1 答案 解析 分析 设物块与地面间的动摩擦因数为 若要物块a b能够发生碰撞 应有 设在a b发生弹性碰撞前的瞬间 a的速度大小为v1 设在a b碰撞后的瞬间 a b的速度大小分别为v1 v2 联立 式解得 由题意 b没有与墙发生碰撞 由功能关系可知 联立 式得 a与b发生弹性碰撞 但没有与墙发生碰撞的条件为 联立 式 可得 1 2015 全国 35 2 如图所示 在足够长的光滑水平面上 物体A B C位于同一直线上 A位于B C之间 A的质量为m B C的质量都为M 三者均处于静止状态 现使A以某一速度向右运动 求m和M之间应满足什么条件 才能使A只与B C各发生一次碰撞 设物体间的碰撞都是弹性的 答案 解析 分析 设A运动的初速度为v0 A向右运动与C发生碰撞 mv0 mv1 Mv2 要使得A与B能发生碰撞 需要满足v1 0 即m MA反向向左运动与B发生碰撞过程 有mv1 mv3 Mv4 由于m M 所以A还会向右运动 根据要求不发生第二次碰撞 需要满足v3 v2 整理可得m2 4Mm M2 所以使A只与B C各发生一次碰撞 须满足 2 如图所示 用轻弹簧相连的质量均为2kg的A B两物块都以v 6m s的速度在光滑水平地面上运动 弹簧处于原长 质量为4kg的物块C静止在前方 B与C碰撞后二者粘在一起运动 在以后的运动中 求 1 当弹簧的弹性势能最大时 物块A的速度是多大 答案 解析 3m s 当A B C三者的速度相等时弹簧的弹性势能最大 mA mB v mA mB mC vA 由 式解得vA 3m s B C碰撞时B C组成的系统动量守恒 设碰后瞬间B C两者的速度为v 则 mBv mB mC v 由 式解得 v 2m s 设物块A速度为vA 时 弹簧的弹性势能最大为Ep 根据能量守恒 2 弹性势能的最大值是多大 答案 解析 12J 由 式解得 Ep 12J 系统动量守恒 mAv mBv mAvA mB mC vB 设A的速度向左 vA 0 vB 4m s则作用后A B C动能之和 3 A的速度有可能向左吗 为什么 答案 解析 不可能理由见解析 实际上系统的总机械能为 根据能量守恒定律 E E是不可能的 所以A不可能向左运动 1 2 命题点二多运动过程问题的综合分析 应用力学三大观点解题时应注意的问题 1 弄清有几个物体参与运动 并划分清楚物体的运动过程 2 进行正确的受力分析 明确各过程的运动特点 3 光滑的平面或曲面 还有不计阻力的抛体运动 机械能一定守恒 碰撞过程 子弹打击木块 不受其他外力作用的两物体相互作用问题 一般考虑用动量守恒定律分析 4 如含摩擦生热问题 则考虑用能量守恒定律分析 2015 广东 36 如图所示 一条带有圆轨道的长轨道水平固定 圆轨道竖直 底端分别与两侧的直轨道相切 半径R 0 5m 物块A以v0 6m s的速度滑入圆轨道 滑过最高点Q 再沿圆轨道滑出后 与直轨道上P处静止的物块B碰撞 碰后粘在一起运动 P点左侧轨道光滑 右侧轨道呈粗糙段 光滑段交替排列 每段长度都为L 0 1m 物块与各粗糙段间的动摩擦因数都为 0 1 A B的质量均为m 1kg 重力加速度g取10m s2 A B视为质点 碰撞时间极短 例2 1 求A滑过Q点时的速度大小v和受到的弹力大小F 答案 见解析 解析 解得 A滑过Q点时受到的弹力F 22N 2 若碰后AB最终停止在第k个粗糙段上 求k的数值 分析 解析 答案 见解析 P点左侧轨道光滑 光滑 粗糙 3 求碰后AB滑至第n个 n k 光滑段上的速度vn与n的关系式 解析 答案 见解析 3 如图所示 小球A质量为m 系在细线的一端 线的另一端固定在O点 O点到光滑水平面的距离为h 物块B和C的质量分别是5m和3m B与C用轻弹簧拴接 置于光滑的水平面上 且B物块位于O点正下方 现拉动小球使细线水平伸直 小球由静止释放 运动到最低点时与物块B发生正碰 碰撞时间极短 反弹后上升到最高点时到水平面的距离为 小球与物块均视为质点 不计空气阻力 重力加速度为g 求碰撞过程B物块受到的冲量大小及碰后轻弹簧获得的最大弹性势能 答案 解析 碰撞后小球反弹到最高 小球运动到最低点过程 A B相碰 mv1 mv1 5mv2 碰撞后B C 5mv2 8mv3 4 如图所示 在倾角 30 的斜面上放置一个凹槽B B与斜面间的动摩擦因数 槽内靠近右侧壁处有一小物块A 可视为质点 它到凹槽左侧壁的距离d 0 10m A B的质量都为m 2 0kg B与斜面间的最大静摩擦力可认为等于滑动摩擦力 不计A B之间的摩擦 斜面足够长 现同时由静止释放A B 经过一段时间 A与B的侧壁发生碰撞 碰撞过程不计机械能损失 碰撞时间极短 取g 10m s2 求 1 物块A和凹槽B的加速度分别是多大 答案 解析 5 0m s20 设A的加速度为a1 则mgsin ma1 a1 gsin 5 0m s2设B受到斜面施加的滑动摩擦力为Ff 则 Ff 2mgcos 2 2 0 10 cos30 10N 方向沿斜面向上 B所受重力沿斜面的分力G1 mgsin 2 0 10 sin30 10N 方向沿斜面向下 因为G1 Ff 所以B受力平衡 释放后B保持静止 则凹槽B的加速度a2 0 2 物块A与凹槽B的左侧壁第一次碰撞后瞬间A B的速度大小 答案 解析 01 0m s 3 从初始位置到物块A与凹槽B的左侧壁发生第三次碰撞时B的位移大小 答案 解析 1 2m 设A与B第一次碰后到第二次碰时所用的时间为t2 A运动的距离为xA1 B运动的距离为xB1 第二次碰时A的速度为vA3 则 解得t2 0 4s xB1 0 40m vA3 a1t2 2 0m s第二次碰撞后 由动量守恒定律和能量守恒定律可解得A B再次发生速度交换 B以vA3 2 0m s速度做匀速直线运动 A以vB1 1 0m s的初速度做匀加速运动 用前面第一次碰撞到第二次碰撞的分析方法可知 在后续的运动过程中 物块A不会与凹槽B的右侧壁碰撞 并且A与B第二次碰撞后 也再经过t3 0 40s A与B发生第三次碰撞 设A与B在第二次碰后到第三次碰时B运动的位移为xB2 则xB2 vA3t3 2 0 0 40m 0 80m 设从初始位置到物块A与凹槽B的左内侧壁发生第三次碰撞时B的位移大小为x 则x xB1 xB2 0 40 0 80 m 1 2m 1 3 命题点三滑块 木板模型问题 如图所示 质量m1 0 3kg的小车静止在光滑的水平面上 车长L 15m 现有质量m2 0 2kg可视为质点的物块 以水平向右的速度v0 2m s从左端滑上小车 最后在车面上某处与小车保持相对静止 物块与车面间的动摩擦因数 0 5 g取10m s2 求 1 物块在车面上滑行的时间t 2 要使物块不从小车右端滑出 物块滑上小车左端的速度v0 不超过多少 例3 答案 0 24s 答案 分析 解析 1 设物块与小车的共同速度为v 以水平向右为正方向 m2v0 m1 m2 v设物块与车面间的滑动摩擦力为Ff Fft m2v m2v0其中Ff m2g 2 要使物块恰好不从小车右端滑出 物块滑到车面右端时与小车有共同的速度v 则有m2v0 m1 m2 v 由功能关系有 5 如图所示 水平放置的轻弹簧左端固定 小物块P置于水平桌面上的A点并与弹簧的右端接触 此时弹簧处于原长 现用水平向左的推力将P缓缓推至B点 弹簧仍在弹性限度内 时 推力做的功为WF 6J 撤去推力后 小物块P沿桌面滑动到停在光滑水平地面上 靠在桌子边缘C点的平板小车Q上 且恰好物块P在小车Q上不滑出去 不掉下小车 小车的上表面与桌面在同一水平面上 已知P Q质量分别为m 1kg M 4kg A B间距离为L1 5cm A离桌子边缘C点的距离为L2 90cm P与桌面及P与Q的动摩擦因数均为 0 4 g 10m s2 试求 1 把小物块推到B处时 弹簧获得的弹性势能 答案 解析 由能量守恒有 增加的弹性势能为 Ep WF mgL1 6 0 4 10 0 05 J 5 8J 5 8J 2 小物块滑到C点的速度大小 答案 解析 对BC过程由动能定理可知 Ep mg L1 L2 mv02 代入数据解得小物块滑到C点的速度为 v0 2m s 2m s 3 P和Q最后的速度大小 答案 解析 对P Q由动量守恒定律得 mv0 m M v解得共同速度 v 0 4m s 0 4m s 4 Q的长度 答案 解析 对PQ由能量守恒得 mgL mv02 m M v2代入数据解得小车的长度 L 0 4m 0 4m 6 如图所示 在光滑的水平面上有一质量为M的长木板 以速度v0向右做匀速直线运动 将质量为m的小铁块轻轻放在木板上的A点 这时小铁块相对地面速度为零 小铁块相对木板向左滑动 由于小铁块和木板间有摩擦 最后它们之间相对静止 已知它们之间的动摩擦因数为 问 1 小铁块跟木板相对静止时 它们的共同速度为多大 答案 解析 Mv0 M m v 2 它们相对静止时 小铁块与A点距离有多远 答案 解析 设小铁块距A点的距离为L 由能量守恒定律得 3 在全过程中有多少机械能转化为内能 答案 解析 全过程所损失的机械能为 1 4 课时作业 1 2016 全国 35 2 如图所示 光滑冰面上静止放置一表面光滑的斜面体 斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上 某时刻小孩将冰块以相对冰面3m s的速度向斜面体推出 冰块平滑地滑上斜面体 在斜面体上上升的最大高度为h 0 3m h小于斜面体的高度 已知小孩与滑板的总质量为m1 30kg 冰块的质量为m2 10kg 小孩与滑板始终无相对运动 取重力加速度的大小g 10m s2 1 求斜面体的质量 答案 解析 20kg 1 2 3 4 规定向左为速度正方向 冰块在斜面体上上升到最大高度时两者达到共同速度 设此共同速度为v 斜面体的质量为m3 由水平方向动量守恒和机械能守恒定律得m2v0 m2 m3 v 式中v0 3m s为冰块推出时的速度 联立 式并代入题给数据得m3 20kgv 1m s 1 2 3 4 2 通过计算判断 冰块与斜面体分离后能否追上小孩 答案 解析 不能 理由见解析 1 2 3 4 设小孩推出冰块后的速度为v1 由动量守恒定律有m1v1 m2v0 0 代入数据得v1 1m s 设冰块与斜面体分离后的速度分别为v2和v3 由动量守恒和机械能守恒定律有m2v0 m2v2 m3v3 1 2 3 4 联立 式并代入数据得v2 1m s由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方 故冰块不能追上小孩 1 2 3 4 2 如图所示 光滑水平面上有一质量M 4 0kg的平板车 车的上表面是一段长L 1 5m的粗糙水平轨道 水平轨道左侧连一半径R 0 25m的四分之一光滑圆弧轨道 圆弧轨道与水平轨道在点O 相切 现将一质量m 1 0kg的小物块 可视为质点 从平板车的右端以水平向左的初速度v0滑上平板车 小物块与水平轨道间的动摩擦因数 0 5 小物块恰能到达圆弧轨道的最高点A 取g 10m s2 求 1 小物块滑上平板车的初速度v0的大小 答案 解析 5m s 1 2 3 4 平板车和小物块组成的系统水平方向动量守恒 设小物块到达圆弧轨道最高点A时 二者的共同速度为v1由动量守恒得 mv0 M m v1 由能量守恒得 联立 并代入数据解得 v0 5m s 1 2 3 4 2 小物块与车最终相对静止时 它距点O 的距离 答案 解析 0 5m 设小物块最终与车相对静止时 二者的共同速度为v2 从小物块滑上平板车 到二者相对静止的过程中 由动量守恒得 mv0 M m v2 设小物块与车最终相对静止时 它距O 点的距离为x 由能量守恒得 联立 并代入数据解得 x 0 5m 1 2 3 4 3 如图所示 光滑水平直轨道上有三个质量均为m的物块A B C B的左侧固定一轻弹簧 弹簧左侧的挡板质量不计 设A以速度v0朝B运动 压缩弹簧 当A B速度相等时 B与C恰好相碰并粘接在一起 然后继续运动 假设B和C碰撞过程时间极短 求从A开始压缩弹簧直到与弹簧分离的过程中 1 整个系统损失的机械能 答案 解析 1 2 3 4 对A B 由动量守恒定律得mv0 2mv1 B与C碰撞的瞬间 B C组成的系统动量定恒 有 系统损失的机械能 1 2 3 4 2 弹簧被压缩到最短时的弹性势能 答案 解析 当A B C速度相同时 弹簧的弹性势能最大 根据动量守恒定律得mv0 3mv 根据能量守恒定律得 弹簧的最大弹性势能 1 2 3 4 4 如图所示 固定的光滑平台左端固定有一光滑的半圆轨道 轨道半径为R 平台上静止放着两个滑块A B 其质量mA m mB 2m 两滑块间夹有少量炸药 平台右侧有一小车 静止在光滑的水平地面上 小车质量M 3m 车长L 2R 车面与平台的台面等高 车面粗糙 动摩擦因数 0 2 右侧地面上有一不超过车面高的立桩 立桩与小车右端的距离为x x在0 x 2R的范围内取值 当小车运动到立桩处立即被牢固粘连 点燃炸药后 滑块A恰好能够通过半圆轨道的最高点D 滑块B冲上小车 两滑块都可以看做质点 炸药的质量忽略不计 爆炸的时间极短 爆炸后两个滑块的速度方向在同一水平直线上 重力加速度为g 10m s2 求 1 2 3 4 1 滑块A在半圆轨道最低点C时受到轨道的支持力FN 见解析 答案 解析 1 2 3 4 以水平向右为正方向 设爆炸后滑块A的速度大小为vA 设滑块A在半圆轨道运动到达最高点的速度为vAD 则mAg m 滑块A在半圆轨道上运动过程中 1 2 3 4 2 炸药爆炸后滑块B的速度大小vB 见解析 答案 解析 在A B爆炸过程 动量守恒 则mBvB mA vA 0 1 2 3 4 3 请讨论滑块B从滑上小车在小车上运动的过程中 克服摩擦力做的功Wf与s的关系 见解析 答案 解析 1 2 3 4 滑块B滑上小车直到与小车共速 设为v共整个过程中 动量守恒 mBvB mB M v共 滑块B从滑上小车到共速时的位移为 小车从开始运动到共速时的位移为 1 2 3 4 两者位移之差 即滑块B相对小车的位移 为 即滑块B与小车在达到共速时未掉下小车 当小车与立桩碰撞后小车停止 然后滑块B以v共向右做匀减速直线运动 则直到停下来发生的位移为x 所以 滑块B会从小车上滑离 1 2 3 4 Wf 2mg L x 4m 2R x 1 2 3 4
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!