高考数学大二轮总复习 增分策略 专题八 数学思想方法课件.ppt

上传人:xt****7 文档编号:5645928 上传时间:2020-02-04 格式:PPT 页数:46 大小:1.74MB
返回 下载 相关 举报
高考数学大二轮总复习 增分策略 专题八 数学思想方法课件.ppt_第1页
第1页 / 共46页
高考数学大二轮总复习 增分策略 专题八 数学思想方法课件.ppt_第2页
第2页 / 共46页
高考数学大二轮总复习 增分策略 专题八 数学思想方法课件.ppt_第3页
第3页 / 共46页
点击查看更多>>
资源描述
专题八数学思想方法 专题八数学思想方法 一 函数与方程思想 二 数形结合思想 三 分类与整合思想 内容索引 四 转化与化归思想 一 函数与方程思想 高考数学以能力立意 一是考查数学的基础知识 基本技能 二是考查基本数学思想方法 考查数学思维的深度 广度和宽度 数学思想方法是指从数学的角度来认识 处理和解决问题 是数学意识 是数学技能的升华和提高 中学数学思想主要有函数与方程思想 数形结合思想 分类与整合思想 化归和转化思想 一 函数与方程思想函数思想 就是用函数与变量去思考问题分析和研究数学中的数量关系 建立函数关系或构造函数 运用函数的图象和性质去分析问题 转化问题 从而使问题获得解决的数学思想 方程的思想 就是分析数学问题中变量间的等量关系 建立方程或方程组 或者构造方程 通过解方程或方程组 或者运用方程的性质去分析 转化问题 使问题获得解决的数学思想 例1 1 2014 湖南 若0 x1 x2 1 则 解析设f x ex lnx 0 x 1 令f x 0 得xex 1 0 因此函数f x 在 0 1 上不是单调函数 故A B选项不正确 又0g x2 答案C 2 若将函数f x sin2x cos2x的图象向右平移 个单位 所得图象关于y轴对称 则 的最小正值是 思维升华 函数与方程思想在解题中的应用 1 函数与不等式的相互转化 对函数y f x 当y 0时 就化为不等式f x 0 借助于函数的图象和性质可解决有关问题 而研究函数的性质也离不开不等式 2 数列的通项与前n项和是自变量为正整数的函数 用函数的观点去处理数列问题十分重要 思维升华 3 解析几何中的许多问题 需要通过解二元方程组才能解决 这都涉及二次方程与二次函数有关理论 4 立体几何中有关线段 角 面积 体积的计算 经常需要运用列方程或建立函数表达式的方法加以解决 跟踪演练1 1 若函数f x 在R上可导 且满足f x f 2 C 2f 1 f 2 D f 1 f 2 A 2 如图是函数y Asin x 其中A 0 0 在一个周期内的图象 则此函数的解析式是 解析依函数图象 知y的最大值为2 所以A 2 答案B 二 数形结合思想 数形结合思想包含 以形助数 和 以数辅形 两个方面 其应用大致可以分为两种情形 一是借助形的生动性和直观性来阐明数形之间的联系 即以形作为手段 数作为目的 比如应用函数的图象来直观地说明函数的性质 二是借助于数的精确性和规范严密性来阐明形的某些属性 即以数作为手段 形作为目的 如应用曲线的方程来精确地阐明曲线的几何性质 例2 1 2014 山东 已知函数f x x 2 1 g x kx 若方程f x g x 有两个不相等的实根 则实数k的取值范围是 解析先作出函数f x x 2 1的图象 如图所示 当直线g x kx与直线AB平行时斜率为1 答案B 解析可行域如图所示 由图知 过点A的直线OA的斜率最小 答案2 思维升华 数形结合思想在解题中的应用 1 构建函数模型并结合其图象求参数的取值范围或解不等式 2 构建函数模型并结合其图象研究方程根或函数的零点的范围 3 构建解析几何模型求最值或范围 4 构建函数模型并结合其图象研究量与量之间的大小关系 跟踪演练2 1 已知奇函数f x 的定义域是 x x 0 x R 且在 0 上单调递增 若f 1 0 则满足x f x 0的x的取值范围是 解析作出符合条件的一个函数图象草图即可 由图可知x f x 0的x的取值范围是 1 0 0 1 1 0 0 1 2 已知P是直线l 3x 4y 8 0上的动点 PA PB是圆x2 y2 2x 2y 1 0的两条切线 A B是切点 C是圆心 则四边形PACB面积的最小值为 解析如图 三 分类与整合思想 分类与整合思想是将一个较复杂的数学问题分解 或分割 成若干个基础性问题 通过对基础性问题的解答来实现解决原问题的思想策略 对问题实行分类与整合 分类标准等于增加一个已知条件 实现了有效增设 将大问题 或综合性问题 分解为小问题 或基础性问题 优化解题思路 降低问题难度 分类研究后还要对讨论结果进行整合 解析由f f a 2f a 得 f a 1 当a 1时 有2a 1 a 0 a 1 答案C 解析若 PF2F1 90 则 PF1 2 PF2 2 F1F2 2 若 F2PF1 90 则 F1F2 2 PF1 2 PF2 2 PF1 2 6 PF1 2 思维升华 分类与整合思想在解题中的应用 1 由数学概念引起的分类 有的概念本身是分类的 如绝对值 直线斜率 指数函数 对数函数等 2 由性质 定理 公式的限制引起的分类讨论 有的定理 公式 性质是分类给出的 在不同的条件下结论不一致 如等比数列的前n项和公式 函数的单调性等 思维升华 3 由数学运算和字母参数变化引起的分类 如除法运算中除数不为零 偶次方根为非负 对数真数与底数的限制 指数运算中底数的要求 不等式两边同乘以一个正数 负数 三角函数的定义域等 4 由图形的不确定性引起的分类讨论 有的图形类型 位置需要分类 如角的终边所在的象限 点 线 面的位置关系等 此时 ABC为钝角三角形 符合题意 所以AC 1 此时AB2 AC2 BC2 答案B 2 2014 广东 设集合A x1 x2 x3 x4 x5 xi 1 0 1 i 1 2 3 4 5 那么集合A中满足条件 1 x1 x2 x3 x4 x5 3 的元素个数为 A 60B 90C 120D 130 解析在x1 x2 x3 x4 x5这五个数中 因为xi 1 0 1 i 1 2 3 4 5 答案D 转化与化归思想 就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化 进而得到解决的一种方法 一般总是将复杂的问题通过变换转化为简单的问题 将难解的问题通过变换转化为容易求解的问题 将未解决的问题通过变换转化为已解决的问题 四 转化与化归思想 解析1 2是方程ax2 bx 2 0的两实根 答案D 解析依题意 问题等价于f x1 min g x2 max 由f x 0 解得1 x 3 故函数f x 的单调递增区间是 1 3 同理得f x 的单调递减区间是 0 1 和 3 故在区间 0 2 上 x 1是函数f x 的极小值点 这个极小值点是唯一的 当b2时 g x2 max g 2 4b 8 故问题等价于 解第一个不等式组得b 1 第三个不等式组无解 答案A 思维升华 转化与化归思想在解题中的应用 1 在三角函数中 涉及到三角式的变形 一般通过转化与化归将复杂的三角问题转化为已知或易解的三角问题 以起到化暗为明的作用 主要的方法有公式的 三用 顺用 逆用 变形用 角度的转化 函数的转化等 2 换元法 是将一个复杂的或陌生的函数 方程 不等式转化为简单的或熟悉的函数 方程 不等式的一种重要的方法 思维升华 3 在解决平面向量与三角函数 平面几何 解析几何等知识的交汇题目时 常将平面向量语言与三角函数 平面几何 解析几何语言进行转化 4 在解决数列问题时 常将一般数列转化为等差数列或等比数列求解 思维升华 5 在利用导数研究函数问题时 常将函数的单调性 极值 最值 切线问题 转化为其导函数f x 构成的方程 不等式问题求解 6 在解决解析几何 立体几何问题时 常常在数与形之间进行转化 解析 f x f x sinx f x 2 f x sinx f x 2 f x sinx sinx f x f x 是以2 为周期的周期函数 答案A 解析由于直接求解较困难 可探求一般规律
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!