高中数学 第一章 导数及其应用 5.3 定积分的概念课件 新人教B版选修2-2.ppt

上传人:xt****7 文档编号:5523936 上传时间:2020-02-01 格式:PPT 页数:30 大小:1.12MB
返回 下载 相关 举报
高中数学 第一章 导数及其应用 5.3 定积分的概念课件 新人教B版选修2-2.ppt_第1页
第1页 / 共30页
高中数学 第一章 导数及其应用 5.3 定积分的概念课件 新人教B版选修2-2.ppt_第2页
第2页 / 共30页
高中数学 第一章 导数及其应用 5.3 定积分的概念课件 新人教B版选修2-2.ppt_第3页
第3页 / 共30页
点击查看更多>>
资源描述
1 5 3定积分的概念 定积分的概念 内容 应用 求定积分 利用定积分求不规则图形的面积 定积分的几何意义 本课主要学习定积分的概念 几何意义及定积分的性质 通过求曲边梯形的面积和变速直线运动的路程 了解定积分的背景 从求曲边梯形的面积和变速运动行驶的路程出发 让学生自己感受这两类问题都是共同的特点 特定形式和的极限 从而引导学生学习定积分的概念 再结合图像理解定积分的几何意义和掌握定积分的运算性质就容易理解和掌握了 设置了3个例题 通过解决具体问题巩固定积分的概念 例题设置难易适度 每个例题后有针对性的练习 便于学生巩固和掌握 另外题型涉及到用定积分的概念 运算性质和几何意义去求解问题 培养学生分析问题和解决问题的能力 微积分在几何上有两个基本问题 1 如何确定曲线上一点处切线的斜率 2 如何求曲线下方 曲线梯形 的面积 直线 几条线段连成的折线 曲线 知识回顾 用 以直代曲 解决问题的思想和具体操作过程 分割 以曲代直 作和 逼近 求由连续曲线y f x 对应的曲边梯形面积的方法 2 以直代曲 任取xi xi 1 xi 第i个小曲边梯形的面积用高为f xi 宽为Dx的小矩形面积f xi Dx近似地去代替 4 逼近 所求曲边梯形的面积S为 3 作和 取n个小矩形面积的和作为曲边梯形面积S的近似值 xi 1 xi xi 1 分割 在区间 a b 上等间隔地插入n 1个点 将它等分成n个小区间 每个小区间宽度 x 如果当n 时 Sn就无限接近于某个常数 这个常数为函数f x 在区间 a b 上的定积分 记作 从求曲边梯形面积S的过程中可以看出 通过 四个步骤 分割 以直代曲 求和 逼近 1 曲边梯形面积问题 2 变力作功问题 3 变速运动的距离问题 我们把这些问题从具体的问题中抽象出来 作为一个数学概念提出来就是今天要讲的定积分 由此我们可以给定积分的定义 它们都归结为 分割 近似求和 取逼近值 问题情境 定积分的定义 一般地 设函数f x 在区间 a b 上有定义 将区间 a b 等分成n个小区间 每个小区的长度为 在每个小区间上取一点 依次为x1 x2 xi xn 作和如果无限趋近于0时 Sn无限趋近于常数S 那么称常数S为函数f x 在区间 a b 上的定积分 记作 定积分的相关名称 叫做积分号 f x dx 叫做被积表达式 f x 叫做被积函数 x 叫做积分变量 a 叫做积分下限 b 叫做积分上限 a b 叫做积分区间 积分下限 积分上限 按定积分的定义 有 1 由连续曲线y f x f x 0 直线x a x b及x轴所围成的曲边梯形的面积为 2 设物体运动的速度v v t 则此物体在时间区间 a b 内运动的距离s为 3 设物体在变力F F r 的方向上有位移 则F在位移区间 a b 内所做的功W为 注 定积分数值只与被积函数及积分区间 a b 有关 与积分变量记号无关 1 由曲线y x2 1与直线x 1 x 3及x轴所围成的曲边梯形的面积 用定积分表示为 中 积分上限是 积分下限是 积分区间是 2 2 2 2 3 定积分 8 函数在区间 a b 上的定积分能否为负的 定积分 定积分 定积分的几何意义 当f x 0 定积分的几何意义就是 曲线y f x 直线x a x b y 0所围成的曲边梯形的面积 当函数f x 0 x a b 时定积分几何意义 就是位于x轴下方的曲边梯形面积的相反数 用定积分表示下列阴影部分面积 S S S 当函数f x 在x a b 有正有负时 定积分几何意义 就是图中几个曲边图形面积的代数和 x轴上方面积取正号 x轴下方面积取负号 定积分的几何意义 在区间 a b 上曲线与x轴所围成图形面积的代数和 即x轴上方的面积减去x轴下方的面积 例1 计算下列定积分 求定积分 只要理解被积函数和定积分的意义 并作出图形 即可解决 定积分的基本性质 性质1 性质2 定积分关于积分区间具有可加性 性质3 例2 用定积分表示图中四个阴影部分面积 解 0 0 0 0 a y x y x y x y x f x x2 f x x2 1 2 f x 1 a b 1 2 f x x 1 2 1 解 0 0 0 0 a y x y x y x y x 1 2 a b 1 2 f x x2 f x x2 f x 1 f x x 1 2 1 解 0 0 0 0 a y x y x y x y x 1 2 a b 1 2 f x x2 f x x2 f x 1 f x x 1 2 1 解 0 0 0 0 a y x y x y x y x 1 2 a b 1 2 f x x2 f x x2 f x 1 f x x 1 2 1 例3 解 x y f x sinx 1 1 定积分的实质 特殊和式的逼近值 2 定积分的思想和方法 求近似以直 不变 代曲 变 取逼近 3 定积分的几何意义及简单应用 1 利用定积分的几何意义 判断下列定积分值的正 负号 利用定积分的几何意义 说明下列各式 成立 1 2 1 2 试用定积分表示下列各图中影阴部分的面积 0 y x y x2 1 2 0 x y g x a b y 2 面积值为圆的面积的
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!