2019-2020年高考数学 6年高考母题精解精析 专题10 圆锥曲线08 理 .doc

上传人:tian****1990 文档编号:5491061 上传时间:2020-01-31 格式:DOC 页数:10 大小:658.50KB
返回 下载 相关 举报
2019-2020年高考数学 6年高考母题精解精析 专题10 圆锥曲线08 理 .doc_第1页
第1页 / 共10页
2019-2020年高考数学 6年高考母题精解精析 专题10 圆锥曲线08 理 .doc_第2页
第2页 / 共10页
2019-2020年高考数学 6年高考母题精解精析 专题10 圆锥曲线08 理 .doc_第3页
第3页 / 共10页
点击查看更多>>
资源描述
2019-2020年高考数学 6年高考母题精解精析 专题10 圆锥曲线08 理(xx全国卷2理数)(21)(本小题满分12分) 己知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为 ()求C的离心率; ()设C的右顶点为A,右焦点为F,证明:过A、B、D三点的圆与x轴相切 【参考答案】【点评】高考中的解析几何问题一般为综合性较强的题目,将好多考点以圆锥曲线为背景来考查,如向量问题、三角形问题、函数问题等等,试题的难度相对比较稳定.(xx辽宁理数)(20)(本小题满分12分)设椭圆C:的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60o,.(I) 求椭圆C的离心率;(II) 如果|AB|=,求椭圆C的方程.解:(xx江西理数)21. (本小题满分高考资源*网12分)设椭圆,抛物线。(1) 若经过的两个焦点,求的离心率;(2) 设A(0,b),,又M、N为与不在y轴上的两个交点,若AMN的垂心为,且QMN的重心在上,求椭圆和抛物线的方程。【解析】考查椭圆和抛物线的定义、基本量,通过交点三角形来确认方程。(xx重庆理数)(20)(本小题满分12分,(I)小问5分,(II)小问7分)已知以原点O为中心,为右焦点的双曲线C的离心率。(I) 求双曲线C的标准方程及其渐近线方程;(II) 如题(20)图,已知过点的直线与过点(其中)的直线的交点E在双曲线C上,直线MN与两条渐近线分别交与G、H两点,求的面积。(xx北京理数)(19)(本小题共14分)在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.()求动点P的轨迹方程;()设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得PAB与PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。(II)解法一:设点的坐标为,点,得坐标分别为,. 则直线的方程为,直线的方程为令得,.于是得面积 因为,所以 故存在点S使得与的面积相等,此时点的坐标为.(xx四川理数)(20)(本小题满分12分)已知定点A(1,0),F(2,0),定直线l:x,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N()求E的方程;()试判断以线段MN为直径的圆是否过点F,并说明理由. 本小题主要考察直线、轨迹方程、双曲线等基础知识,考察平面机袭击和的思想方法及推理运算能力.因为x1、x21所以直线AB的方程为y(x1)因此M点的坐标为(),同理可得 因此 0(xx天津理数)(20)(本小题满分12分)已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4。(1) 求椭圆的方程;(2) 设直线与椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值(2)解:由(1)可知A(-2,0)。设B点的坐标为(x1,y1),直线l的斜率为k,则直线l的方程为y=k(x+2),
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!