山东省德州市2019年中考数学同步复习 第三章 函数 第六节 二次函数的应用训练.doc

上传人:tian****1990 文档编号:5483989 上传时间:2020-01-30 格式:DOC 页数:8 大小:350.50KB
返回 下载 相关 举报
山东省德州市2019年中考数学同步复习 第三章 函数 第六节 二次函数的应用训练.doc_第1页
第1页 / 共8页
山东省德州市2019年中考数学同步复习 第三章 函数 第六节 二次函数的应用训练.doc_第2页
第2页 / 共8页
山东省德州市2019年中考数学同步复习 第三章 函数 第六节 二次函数的应用训练.doc_第3页
第3页 / 共8页
点击查看更多>>
资源描述
第三章函数第六节二次函数的应用姓名:_班级:_用时:_分钟1(xx衡阳中考)如图,已知直线y2x4分别交x轴、y轴于点A,B,抛物线经过A,B两点,点P是线段AB上一动点,过点P作PCx轴于点C,交抛物线于点D.(1)若抛物线的表达式为y2x22x4,设其顶点为M,其对称轴交AB于点N.求点M,N的坐标;是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B,P,D为顶点的三角形与AOB相似?若存在,求出满足条件的抛物线的表达式;若不存在,请说明理由2(xx衢州中考)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度3(xx黄冈中考)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为y每件产品的利润z(元)与月份x(月)的关系如下表:x123456789101112z191817161514131211101010(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)当月销售量y(万件)当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?4(xx随州中考)如图1,抛物线C1:yax22axc(a0)与x轴交于A,B两点,与y轴交于点C.已知点A的坐标为(1,0),点O为坐标原点,OC3OA,抛物线C1的顶点为G.(1)求出抛物线C1的表达式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k0)个单位,得到抛物线C2,设C2与x轴的交点为A,B,顶点为G,当ABG是等边三角形时,求k的值;(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1,C2于P,Q两点,试探究在直线y1上是否存在点N,使得以P,Q,N为顶点的三角形与AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由5(xx枣庄中考)如图1,已知二次函数yax2xc(a0)的图象与y轴交于点A(0,4),与x轴交于点B,C,点C坐标为(8,0),连接AB,AC.(1)请直接写出二次函数yax2xc的表达式;(2)判断ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A,N,C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B,C重合),过点N作NMAC,交AB于点M,当AMN面积最大时,求此时点N的坐标图1图2参考答案1解:(1)如图,y2x22x42(x)2,顶点M的坐标为(,)当x时,y243,则点N的坐标为(,3)不存在理由如下:MN3.假设存在点P,设P点坐标为(m,2m4),则D(m,2m22m4),PD2m22m4(2m4)2m24m.PDMN,当PDMN时,四边形MNPD为平行四边形,即2m24m,解得m1(舍去),m2,此时P点坐标为(,1)PN,PNMN,平行四边形MNPD不为菱形,不存在点P,使四边形MNPD为菱形(2)存在如图,OB4,OA2,则AB2.当x1时,y2x42,则P(1,2),PB.设抛物线的表达式为yax2bx4,把A(2,0)代入得4a2b40,解得b2a2,抛物线的表达式为yax22(a1)x4.当x1时,yax22(a1)x4a2a242a,则D(1,2a),PD2a2a.DCOB,DPBOBA,当时,PDBBOA,即,解得a2,此时抛物线的表达式为y2x22x4.当时,PDBBAO,即,解得a,此时抛物线的表达式为yx23x4.综上所述,满足条件的抛物线的表达式为y2x22x4或yx23x4.2解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为ya(x3)25(a0),将(8,0)代入ya(x3)25,解得a,水柱所在抛物线(第一象限部分)的函数表达式为y(x3)25(0x8)(2)当y1.8时,有(x3)251.8,解得x11(舍去),x27,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内(3)当x0时,y(x3)25.设改造后水柱所在抛物线(第一象限部分)的函数表达式为yx2bx.该函数图象过点(16,0),016216b,解得b3,改造后水柱所在抛物线(第一象限部分)的函数表达式为yx23x(x)2,扩建改造后喷水池水柱的最大高度为米3解:(1)根据表格可知当1x10(x为整数)时,zx20,当11x12(x为整数)时,z10,z与x的关系式为z(2)当1x8时,w(x20)(x4)x216x80;当9x10时,w(x20)(x20)x240x400;当11x12时,w10(x20)10x200,w与x的关系式为w(3)当1x8时,wx216x80(x8)2144,x8时,w有最大值为144万元;当9x10时,wx240x400(x20)2,w随x的增大而减小,x9时,w有最大值为121万元; 当11x12时,w10x200,w随x的增大而减小,x11时,w有最大值为90万元90121144,x8时,w有最大值为144万元4解:(1)点A的坐标为(1,0),OA1.OC3OA,点C的坐标为(0,3)将A,C点坐标代入yax22axc得解得抛物线C1的表达式为yx22x3(x1)24,点G的坐标为(1,4)(2)设抛物线C2的表达式为yx22x3k,即y(x1)24k.如图,过点G作GDx轴于点D,设BDm.ABG为等边三角形,GDBDm,则点B的坐标为(m1,0),点G的坐标为(1,m)将点B,G的坐标代入y(x1)24k得解得(舍去)或k1.(3)存在M1(,0),N1(,1);M2(,0),N2(1,1);M3(4,0),N3(10,1);M4(4,0),N4(2,1)5解:(1)yx2x4.提示:二次函数yax2xc的图象与y轴交于点A(0,4),与x轴交于点B,C,点C坐标为(8,0),解得抛物线的表达式为yx2x4.(2)ABC是直角三角形理由如下:令y0,则x2x40,解得x18,x22,点B的坐标为(2,0)在RtABO中,AB2BO2AO2224220,在RtAOC中,AC2AO2CO2428280.又BCOBOC2810,在ABC中,AB2AC22080102BC2,ABC是直角三角形(3)A(0,4),C(8,0),AC4.以A为圆心,以AC长为半径作圆,交x轴于点N,此时N的坐标为(8,0);以C为圆心,以AC长为半径作圆,交x轴于点N,此时N的坐标为(84,0)或(84,0);作AC的垂直平分线,交x轴于点N,此时N的坐标为(3,0)综上所述,若点N在x轴上运动,当以点A,N,C为顶点的三角形是等腰三角形时,点N的坐标分别为(8,0),(84,0),(84,0),(3,0)(4)设点N的坐标为(n,0),则BNn2.如图,过点M作MDx轴于点D,MDOA,BMDBAO,.MNAC,.OA4,BC10,BNn2,MD(n2)SAMNSABNSBMNBNOABNMD(n2)4(n2)2(n3)25,当n3时,SAMN最大,当AMN面积最大时,N点坐标为(3,0)
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!