2019-2020年高三物理第一轮复习《第十四章 光的直线传播》教案.doc

上传人:tian****1990 文档编号:5480543 上传时间:2020-01-30 格式:DOC 页数:23 大小:1.13MB
返回 下载 相关 举报
2019-2020年高三物理第一轮复习《第十四章 光的直线传播》教案.doc_第1页
第1页 / 共23页
2019-2020年高三物理第一轮复习《第十四章 光的直线传播》教案.doc_第2页
第2页 / 共23页
2019-2020年高三物理第一轮复习《第十四章 光的直线传播》教案.doc_第3页
第3页 / 共23页
点击查看更多>>
资源描述
2019-2020年高三物理第一轮复习第十四章 光的直线传播教案备课指要教学建议(1)光的直线传播和反射的知识是属于相对容易的知识,学生在初中就已经学过,因而对这部分知识的复习不需投入过多的时间. 但要重视引导学生掌握几何光学的特殊研究方法,如:几何知识的应用、作图法等.可结合“案例导入”中的例1强调几何方法的应用,培养画图分析的解题习惯;结合“案例导入”中的例2和“重点、难点、疑点分析”中的例3强调作图规范.(2)光路的可逆性是光传播的一般规律,在解决几何光学问题中很有用.在教学中可结合“重、难、疑点剖析”中的例3引导学生理解和运用它.(3)光的直线传播和反射知识与生活实际的联系紧密,可结合“重、难、疑点剖析”中的例1和“探究延伸”中的例1启发学生学会运用光学知识去分析有关的生活现象,解决综合应用的问题.案例导入例1:如图14-48-1所示,在A点有一个小球,紧靠小球的左上方有一个点光源.现将小球从A点正对着竖直墙平抛出去.打到竖直墙之前,小球在点光源照射下的影子在墙上的运动是( ).A匀速直线运动B自由落体运动C变加速直线运动D匀减速直线运动【分析】小球做平抛运动.影在墙上做竖直向上的直线运动.若将小球的平抛运动沿水平和竖直方向分解,便可通过几何关系来构建球和影的运动的联系.【解答】小球抛出后做平抛运动,时间t后水平位移是vt,竖直位移是h=,根据相似形知识可以求得x=t,因此影子在墙上的运动是匀速运动.【答案】A.【归纳】本题考查了光的直线传播原理与平抛运动知识的综合应用.例2:用作图法确定人在镜前通过平面镜可看到AB完整像的范围.【分析】像的观察范围是由物的端点对平面镜的边缘成像的光路构成的.通过像作反射光路是光学作图最常用的方法.【解答】先根据对称性作出AB的像AB再分别作出A点,B点发出的光经平面镜反射后能照射到的范围,再找到它们的公共区域(交集).就是能看到完整的范围.【答案】如图14-48-2.【归纳】成像作图是这一章复习的重点和难点.注意作图的规范要求:表示光的传播方向的光线要标箭头表示传播方向;表示虚像的线段和光路的反向延长线均用虚线作图,不标箭头.知识梳理1、光源、光线和光速 (1)光源:能够自身发光的物体叫光源.如太阳、电灯、点燃的蜡烛.(2)光线:对用来表示光传播方向的直线.它是光束的理想化模型.(3)光速:光的传播速度简称为光速. 在真空中,光速c=3.0108m/s,光在空气中的传播速度略小于c,在其他介质中均小于c.2、光的直线传播(1)介质:光能够在其中传播的物质叫介质.(2)光沿直线传播的条件:在同一种各向同性的均匀介质中光沿直线传播.(3)影:光线被不透明的物体挡住,在不透明物体后面所形成的暗区称为影.3、光的反射(1)光的反射:是指光由一种介质射到另一种介质的界面上,一部分光线改变传播方向而返回原来介质的现象.光的反射问题中,有两类典型的反射模型:镜面反射和漫反射.若平行的入射光线经界面反射后仍然平行,这种反射称为镜面反射.若平行的入射光线经界面反射后沿各个不同的方向反射出去,这种反射称为漫反射.(2)反射定律:反射光线、入射光线及法线在同一平面内,反射光线和入射光线分别位于法线的两侧;反射角等于入射角.(3)在光的反射现象中,光路是可逆的.4、平面镜(1)作用:只改变光束的传播方向,不改变光束的聚散性质.(2)成像特点:等大、正立、关于镜面对称的虚像.重、难、疑点剖析1、日食和月食的区别日食形成的原因是月亮阻挡了应该射向地球某区域的部分或全部太阳光. 地球的某部分处在太阳在月球后方形成的本影区为日全食,处于半影区的为日偏食,处于伪本影区的为日环食.月食形成原因是地球自身阻挡了由太阳射向月球的光线,导致月球的某一部分(也可是全部)无任何光线反射出来.亦即月球的某一部分(也可是全部)处于太阳在地球后方形成本影区内,形成月偏食(月全食).特别要注意的是若月球处在太阳在地球后方形成的半影(或伪本影)区中,因为整个月球都受到了部分太阳的照射,所以不出现月食.2、平面镜成像(1)解决平面镜成像问题时,要根据其成像的特点(物、像关于镜面对称),作出光路图再应用反射定律和几何关系求解.(2)作平面镜成像光路图的技巧:因平面镜所成的像是与物关于镜面对称的正立等大的虚像,所以可先利用物像“对称性”确定像点的位置. 然后再补画入射光线和反射光线.但须注意:光线的反向延长线应画虚线,且不加箭头.(3)确定平面镜成像的观察范围的方法:根据物、像位置并应用反射定律画出镜子或遮挡物边缘的光线的传播方向来确定观察范围. 观察像的两端点的范围的公共部分,即为完整的像的观察范围.例1:关于日食和月食,正确的说法是( ).A位于月球本影中的人,能看到月全食 B位于月球本影中的人,使能看到日偏食C月球处于地球的半影内,出现月偏食 D月球处于地球的本影内,出现月全食【分析】如图14-48-3甲所示表示阳光照射下月球形成的影区分布情况.A、B为半影区,地球上位于月球半影区的人,观察到的是日偏食;C是本影区,在本影区的人看不到太阳的整个发光面,是日全食;D是伪本影区,若观察者在伪本影区看不到太阳发光面的中部,发生日环食.当月球运行到地球的本影里时发生月食现象(图14-48-3乙),月球全部进入地球本影区,太阳光不能照射到月球上,面向月球的半个地球上的人将看不到月球,发生月全食;月球有一部分进入地球本影区时,但另一部分仍有阳光照射,因此发生月偏食.【分析】B、D.【归纳】只有正确理解了日食、月食形成的原因,才能对问题进行正确的判断.例2:如图14-48-4所示,水平地面上有一个正方形木箱,木箱上方水平放置一块足够大的平面镜MN. 试用作图法画出人眼在S处通过平面镜能看到的木箱右方的水平面的区域.【分析】连S和木箱左上角顶点并延长,便可作出刚好不被本箱挡住的入射光线但要作出刚好不被木箱挡住的反射光线,直接作图很困难,只有借助像点来作图.【解答】(1)设S为一个点光湖泊,作出其像点S.(2)连接S和木箱左上角顶点并延长交平面镜于A,连接SA并延长交水平面于Q.(3)连接S和木箱右上角顶点并延长交水平面于P.(4)PQ就是S发出的光线经平面镜反射后能照亮的木箱右方水平.根据光路可逆,PQ也就是人眼在S处通过平面镜能看到的木箱右方的水平面的范围.【答案】如图14-48-5.【归纳】(1)利用光路可逆原理:眼睛是接受光线的器官,本身不能发光,根据光路可逆,假设在S处有一个点光源,那么它发出的光经平面镜反射后能照亮的木箱右边的范围,也就是人眼能在平面镜中看到的范围(如右下图);(2)利用平面镜成像的对称性;先由对称性作出S的像点S,再分析反射光能照亮的区域.考题回放例1:一个点光源S对平面镜成像,如图14-48-6所示,设光源不动,平面镜以速率v沿OS方向向光源平移. 镜面与OS方向之间的夹角为30,则光源的像S将( )A以速率0.5v沿SS连线向S运动B以速率v沿SS连线向S运动C以速率v沿SS连线向S运动D以速率2v沿SS连线向S运动【分析】当物点不动,平面镜运动时,平面镜沿与镜面平行的方向运动不引起像的位置变化,只有沿与镜面垂直方向的运动才会引起像的位置变化. 【分析】当物点不动,平面镜运动时,平面镜沿与镜面平行的方向运动不引起像的位置变化,只有沿与镜面垂直方向的运动才会引起像的位置变化.【解答】根据平面镜成像规律,像点S将沿SS连线向S运动,且像点到物点的距离总是平面镜到物点距离的两倍. 平面镜沿SS方向靠近S的速度大小为v1=vsin30=0.5v,那么,像点S相对于S的速度大小也应是平面镜 SS方向靠近S的速度大小的两倍. v2=2v1=v.【答案】B. 【反思】本题主要考查学生平面镜成像规律,注意分析物、像、镜的相对运动关系.例2:一路灯距地面的高主为h,身高为l的人以速度v匀速行走,如图14-48-7所示.(1)试证明人的头顶的影子做匀速运动;(2)求人景的长度随时间的变化率.【分析】根据光的直线传播,作出人向右匀速运动时,人头和人头的影的位置示意图,根据匀速直线直线运动的规律和投影的几何关系,的出人头的影的位移和时间的关系以及人影的长度和时间的关系便可求解.【解答】(1)设t=0时刻,人位于路灯的正下方O处,在时刻t,人走到S处,根据题意有 OS=vt. 过路灯P和人头顶的直线与地面的交点M为t时刻人头顶影子的位置,如图14-48-8所示,OM为人头顶影子到O点的距离.由几何关系,有 解得 OM= 因OM与时间成正比,故人头顶的影子作匀速运动.(2)由图可知,在时刻t,人影的长度为SM,由几何关系,有SM=OM-OS, 由式得 SM= 可见影长SM与时间t成正比,所以影长随时间的变化率k= 【答案】(2)人影的长度随时间的变化率k=【反思】解几何光学题要重视几何关系的分析和几何知识的应用.探究延伸例 图14-48-9(a)是在傍晚看到的月亮,图(b)是从地球背极上空看到的月球绕地球运动图.读图回答:(1)图(a)的月亮称做 月,此时的月亮应位于图(b)的 和 之间, 在农历月中应处于 (上或下)半月.(2)在图中用简头表示出地球自转方向.(3)在2001年6月21日,在非洲南部及大西洋观测了21世纪第一次日全食,这一天是农历的初 .(4)2001年6月22日,一万多英格兰人早早地聚集在著名的圆石阵周围,等待观看第一缕曙光穿过圆石阵拱门,这一天有什么特别的意义?【解答】月相的变化与月相变化有关的历时制度是与人类生活很密切的天文现象. 本题中就有涉及月相变化的内容,关键掌握两点:月亮西半侧明亮为农历上半月,东半侧明亮为农历下半月;初一至初七、八和二十二、二十三的月相是蛾眉月;从图可知,此时的月相为凸月,且是西侧明亮,所以图(a)的月亮为上半月的,图(a)的月亮位于图(b)的A和C之间.日食和月食是太阳、地球、月球三者之间位置关系的特殊情况,由图可知,日食只可能发生于朔即初一时(我国农历是严格的朔望月,而且把新月发生时定为月首即初一),而且食只可能发生于望即十五、十六时.【答案】(1)凸月,A、C上;(2)逆时针绕向;(3)一;(4)这天是夏至日.【点评】此题将自然地理与物理相互综合,解答时要正确理解和区分月相和月食的联系和区别.随堂闯关1、关于本影、半影,以下说法正确的是( B ).A点光源发出的光形成的影是半影 B面光源发出的光会形成本影和半影C物体的本影区域总小于半影区域 D. 物体的半影区域总小于本影区域【提示】点光源是无半影区域的. 本影和半影区域的大小,是由光源和障碍物的大小及两者的距离这三方面的因素决定的,不可一概而论.2、一束光线与水平成40角射来,欲使光线沿水平方向传播,所放平面镜与水平面成( A、D ).A20 B.40 C.50 D.70【提示】通过作图分析来确定答案.3、如图14-48-10所示,a、b、c三条光线会聚于S点.若在S点前任意位置放一平面镜,则( C ).A三条反射光线可能交于一点,也可能不交于一点B三条反射光线一定不会交于一点C三条反射光线一定交于镜前一点D三条反射光线的反射延长线一定交于镜后一点【提示】虚拟一与S关于镜面对称的物点S,再根据光路可逆原理求解.4、如图14-48-11甲所示,某人左、右两耳之间距离为L,两眼球光心的距离为d,在人眼正前方竖直放一面平镜MN,要在平面镜中刚好能看到自己的两耳,平面镜的最小宽度应等于,并画出在平面镜中看到两耳的光路图.【提示】作光路图如图14-48-11乙所示,PQ间为所需的最小平面镜的宽度.5、如图14-48-12所示,MO、NO是两互相垂直的平面镜,S是镜前的一个发光点,SA是其中一条射向N凿面镜的入射光线,试作出SA经两平面镜反射后的反射光线,并证明经平面镜NO反射后的反射光线与入射光线SA一定平行.【提示】因为平面镜MO、NO相互垂直,所以法线AA与法线BB相互垂直,如图14-48-13所示. 因而有i1+i2=90,根据光的反射定律有i1=i1,i2=i2,i1+i1+i2+i2=180.故光线BP与SA相互平行,证毕.6、在日落很久后,常能在高空中看到明亮的人造卫星. 有一个在地球赤道上方飞行的人造卫星.日落后两小时后仍能在正上方看到它,试求它的最低高度(地球半径为6.38106m).【提示】若在地球北极上俯视,将看见地球作反射时针方向转动,如图14-48-14所示,把人造卫星画在地球背光一侧的上方,使它恰好被掠过地球表面的阳光照明.从图可见,角即为落日后(即看不见直射阳光后),地球转过的角度,h为最低高度.=.h=R【答案】9.9105m.课后测试一、选择题1 、关于光线,下列说法正确的是( C、D )A光线是从光源中发出的细光束B光源能发出无限多条光线C光线能发出无限多条光线D光线是用来表示光传播方向的直线【提示】光线是人为画出的,不是光源固有的.2、已知月球周围没有大气层,因此在月球上看到的天空的颜色应是( D ).A.蓝色的 B.红色的 C.苍白色的 D.黑暗的【提示】没有气体分子的散射,在月球上空看不到光.3、如图14-48-15所示,L为水平放置的点亮的8W日光灯,T为一藤椅的竖直靠背,横藤条与日光灯管平行,竖藤条相互垂交织,它们之间是透空方格,P是与藤条靠背平地的白屏,现将并从紧贴椅背处慢慢向远处(图中右方)平移,从屏上将依次看到( D ).A横藤条的影,横竖藤条的影B竖藤条的影,横竖藤条的影C横竖藤条的影,竖藤条的影,没有藤条的影D横竖藤条的影,横藤条的影,没有藤条的影【提示】日光灯水平放置时,横藤条的影区大,竖藤条的影区小.4、借助于漫反射,我们才能从不同方向( A、C、D )A看电影 B.看电视 C.欣赏油画 D.欣赏中秋明月【提示】电视屏幕是光源,是直接的发光体.5、一个不透明的小球,由某高处的A点开始做自由落体运动,A点距点光源S和距墙MN的水平距离相等,如图14-48-16所示.小球的影子恰好投射到竖直墙上,关于影子的运动情况是( D ).A做匀速运动 B.做变加速运动C做自由落体运动 D.做匀加速运动【提示】影的位移始终与小球自由下落的位移成正比,故加速度也成正比.6、在水平地面上竖直放置一平面镜.一个人站在平面镜前,刚好能在镜中看到自己的全身像,在该人向后退的过程中,下列说法正确的是( B ).A像变大,你能刚好看到自己的全身像B像的大小不变,你能刚好看自己的全身像C像的大小不变,能看到自己的全身像,但像未占满全幅镜面D像变小,完全能看到自己的全身像【提示】通过画图分析来得出答案.7、如图14-48-17所示是物理学家迈克耳孙测定光速的实验示意图.八面镜静止不动时,望远镜C中可见光源S的像,现在使八面镜开始转动,并且使转速逐渐增大到每秒n转时,在望远镜C中又可看到光源S的像,如果测得八面镜与凹面镜之间的距离是L,凹面镜与平面镜之间的距离可以忽略,则测得的光速是( A ).A16nL B.8nL C.4nL D.2nL【提示】光在棱镜旋八分之一周的时间里正好经过一个来回,路程为2L.二、填空题8、如图14-48-18,P为发光点,N为平面镜,那么在MN与P之间放上不透明挡板Q后所观到像P的亮度变化情况是不变.(填“变亮”或“变暗”或“不变”)【提示】只要未挡到观察的光路,观察的亮度就不会变化.9、图14-48-19中x轴表示水平地面,y轴表示竖直墙壁,S是一点光源.要水平地面上有一块平面镜,它把光源S的入射光反射到墙壁上,被反射光照亮的范围是图中y轴上未画斜线的部分,(MN为挡板,不让S的光线垂直射墙壁)利用作图法(要求画出完整光路图)求出平面镜两端的x坐标分别为 4 和 6 .【提示】利用平面镜成像的对称性及光路可逆原理求解.10、在圆桶中心放一平面镜,光点S1发光射以镜面上,反射光在筒壁呈现光斑S2,如图14-48-20所示.当平面镜绕筒的中轴线以角速度匀速转动时,光点S1在镜子里的像S2的角速度等于 2,光斑S2 在平面镜中的像S2的角速度等于 0 .【提示】入射光固定时,反射光(斑)转动的角速度是平面镜转动的角速度的2倍,即为2 .S1的像S1始终与光斑S2在同一直径上,它们转动的角速度相同;S2的像S2始终与光点S1在同一直径上,故S2不转动.11、如图14-48-21所示,半径R=1m的圆柱体放在水平地面上,在距地面2的上方放置一个与地面平行的平面镜MN,在圆柱体左侧的地上有一点光源S,圆柱体右侧地面AB部分没有光线照射到,若已知S与B的距离为4m,则AB的宽度等于 1.73m .【提示】先根据平面镜成像特点作出B的位置如图14-48-22所示.在RtSSB中,SS=4,SBS=60在RtOAB中,OA=R,OB=30,AB=4cot30=R=1.73m.三、作图计算题12、图14-48-23中AB表示一个平面镜,P1P2是水平放置的米尺(有刻主的一面朝着平面镜),MN是屏,三者互相平行.屏MN上的ab表示一条竖直的缝(即a、b之间是透光的).某人眼睛紧贴米尺上的小孔S(其位置见图),可通过平面镜看到米尺的一部分刻主,试在本题的图上用三角板作图求出可看到的部位,并在P1P2上把这部分涂以标志.【提示】在S处的人眼通过ab缝及平面镜AB看到米尺上P1P2的部位可以有两种不同的解法:一种是根据平面镜对称成像的特点,用三角板作出人眼在平面镜中所成的虚像S.连接Sb并延长到与P1P2相交处的d点,连sa并延长交AB于e,连Se并延长到与P1P2相交于c,是cd就是人眼可看到的米尺部位(如图14-48-24甲所示).另一种解法是根据平面镜对称成像的特点,用三角板作出米尺在平面镜中所成的虚像P1P2以及缝在平面镜中所成的虚像ab,连sb并延长交P1P2上cd的对称区域cd即为人眼看到的米尺部位(如图14-48-24乙所示).【答案】13、如图14-48-25,一束光线穿过屏上小孔S射到平面镜M的O点处,O和S相距L.当平面镜M绕过O点垂直于纸面的轴,以角速度逆时针转过角时,射到屏上的光点P沿屏移动的速度多大? 【提示】如图14-48-26所示,当平面镜以角速度转过时,反射光以2转过2角,则v=2.vp=.=【答案】vp=第49课时 光的折射 全反射和色散备课指要教学建议1、相对光的反射定律而言,光的折射定律、全反射等内容要难一些,也是高考对几何光学考查的重点.折射定律的应用和全反射的计算还可能构成大题出现在高考中,如“考题回放”中的例1和例4.因而折射定律的应用和全反射的计算应强化训练,教学中可结合“案例导入”中的例1和例2,进一步培养学生画图分析的解题习惯和作图的规范.2、光的色散是高考中出现频率最高的试题,这是因为光的色散是几何光学与物理光学知识的结合部,以光的波动学说为理论基础,要求记住不同色光频率从低到高的顺序,知道它们在空真中的传播速度相同(都是C);在介质中传播速度不同,频率越高速度v越小;由n=知,同一介质对频率高的光折射率较大,结合几何光学,可比较不同色(频率)光的折射角、临界角、穿过玻璃砖的侧移等.教学中可结合考题回放中的例3和重、难、疑点剖析中的例3去加以体会.案例导入例1 假设地球表面不存在大气层,那么人们观察到的日出时刻与实际存在大气层的情况相比( C ).A将提前 B将延后C在某地地区将提前,在另一些地区将延后 D. 不变【分析】地球表面不存在大气层时,日出时刻,太阳刚好在观察者所在位置的地平线上.实际存在大气的折射,日出时刻,太阳恰恰在观察者所在位置的地平线上的下方,此结论可根据折射定律作光路图得出.【解答】如图14-49-1所示,a是太阳射出的一束光线,由真空射向大气层发生折射,沿b方向(地平线方向)传播到P点,点P处的人便看到日出.如果没有大气层,光束使沿a直线传播,同样的时刻在P点便看不到太阳,须等太阳再上升,使a光束沿b线方向时才能看到太阳,故没有大气层时看到日出的时刻要比有大气层时延迟.【答案】B.【归纳】本题是一道有关大气中折射现象的问题,要求考生能够联系实际建立物理模型,并根据光的折射定律进行分析推理,得出结论.例2:直角三棱镜的顶角=15,棱镜材料的折射率n=1.5,一细束单色光如图所示垂直于左侧面射入,试作出该入射光第一次从棱镜中射出的光线.【分析】当光从棱镜中射向真空时,如果入射角小于临界角,将发生全反射而不能射出,只有入射角小于临界角,才有光线从棱镜射出.【解答】由n=1.5知临界角大于30小于45,边画图边分析可知该光线在射到A、B、C、D各点时的入射象依次是75、60、45、30,因此在A、B、C均发生反射,到D点入射角才第一次小于临界角,所以才第一次有光线从棱镜射出,且折射角=0.75.【解答】如图14-49-12所示.【归纳】本题为一道作图题,作图的主要依据是全反射的条件.例3:如图14-49-3所示,一条长度为L=5.0m的光导纤维用折射率为n=的材料制成.一细束激光由其左端的中心以=45的入射角光导纤维内,经过一系列全反射后从右端射出. 注:(1)该激光在光导纤维中的速度v是多大?(2)该激光在导纤维中传输所经历的时间t是多少?【分析】光在光导纤维中的速度应等于真空中的速度与折射率的比值;传输所经历的时间则应等于路程与速度之比.【解答】(1)由n=可得v=2.1108m/s.(2)由n=可得光线从左端面射入后的折射角为30,射到侧面时的入射角为60,大于临界角45,因此发生全反射,同理光线每次在侧面都将发生全反射,直到光线达到右端面。由三角关系可以求出光线在光纤中通过的总路程为s=,因此该激光在光导纤维中传输所经历的时间是t=【答案】v=2.1108m/s;t=2.710-8s.【归纳】计算光在光导纤维中传输所经历的时间要注意两点,一是光在介质中传播的速度不等于c,二是光在光纤中通过的总路程不等于纤的总长度L.知识梳理1、光的折射,折射定律,折射率(1)定义:光从一种介质射入另一种介质时,传播方向改变的现象叫光的折射.光的折射遵守折射定律.(2)折射率n:折射率是表示在两均匀介质中光速比值的物理量,光线从真空投入某介质时,n=,叫该介质的折射率(绝对折射率). 同一介质对不同频率的光具有不同的折射率,说明折射率不仅与介质有关,还与光的频率有关,在对可见光为透明的介质内,折射率随光的频率增大而增大.(3)光密介质和光疏介质任何介质的折射率都大于1,折射率越大光在其中传播速度就越小,两种介质相比较,折射率大的介质叫光密介质,折射率小的介质叫光疏介质.(4)折射定律折射光线跟入射光线和法线在同一平面内,折射光线和入射光线位于法线两侧,当光从光疏介质射入光密介质时,折射角小于入射角,光线向站法线偏折,n越大光线偏折越厉害. 光从光密介质身主光疏介质时,折射角小于入射角,光线向着界面偏折,n越大,光线偏折越厉害.(5)在折射现象中,光路是可逆的.2、全反射和临界角(1)全反射:光射到两种介质的界面上,光线全部反射回原介质的现象叫全反射;(2)产生全反射的条件:光线从光密介质射向光疏介质;入射角iC(临界角).(3)临界角:光线从光密介质射向光疏介质时,使折射角达到90的入射角叫做临界角.(4)应用全反射现象举例:光导纤维.全反射棱镜.3、棱镜(1)棱镜:通常指截面为三角形的透镜,即三棱镜;(2)三棱镜利用光的折射改变光的传播路径,光从棱镜的一个侧面射入,从另一侧面射出,出射光线将向底面(第三侧面)偏折;(3)通过三棱镜看物体,看到的是物体的虚像,像的位置向顶角方向偏移;(4)全反射棱镜在光学仪器中被用来改变光路.4、光的色散(1)定义:白光通过棱镜折射后被分解成由红、橙、黄、绿、蓝、靛、紫组成的按次序排列的彩色光谱,这就是光的色散。红光通过棱镜时偏折角较小(因对红光折射率较小),紫光偏折角较大.(2)光的色散现象表明:白光为复色光;同一介质对不同色光的折射率不同,不同色光在同一介质中传播速度不同.(3)复色光通过厚透明板也能发生色散现象.重、难、疑点剖析1、应用折射定律解题的思路是;先画出折射光路图,明确入射角、折射角.然后由折射定律和有关几何知识建立方程求解.应注意的是折射光路也是可逆的.2、正确理解和应用全反射原理我们所学的反射定律,折射定律只解决反射光,折射光的方向问题,而没有解决能量的分配问题.当光由光密介质射入光疏介质(或由介质射入真空时)时,折射角大于入射角. 在入射角由0逐渐增大过程中,反射光能量逐渐增大,折射光能量恰好减少到零,即折射光实际不存在,入射光全部反射回原来介质中,这就是全反射现象.理解发生全反射的条件(光从光密射向光疏介质、入射角大于临界角)是处理好有关光的全反射问题的关键.若光从光密介质(折射率为n)射向光疏介质(折射率为n)时,发生全反射的临界角C可由公式sinC=求得.当光从光密介质射向空气(折射率为1)时,求全反射的临界角的公式为sinC=一般情况下的光的反射,反射光能量小于入射光能量.全反射光能量等于入射光能量,故全反射有较广泛的应用.另一方面,由sinC=,通过测量临界角C可测量介质折射率n .3、色散形成的原因在光的色散中,不同的色光,偏向角不同,这是由于紫光的频率(v紫)大于红光的频率(v红)决定了紫光的折射率(n紫)大于红光的折射率(n红),所以有紫光的偏向角(紫)大于红光的偏向角(红).4、玻璃砖所谓玻璃砖一般指横截面为矩形的棱柱.如图14-49-4所示,当光线从上表面入射,从下表面射出时,其特点是:(1)射出光线和入射光线平行;(2)各种色光在第一次入射后就发生色散;(3)出射光线的侧移和折射率、入射角、玻璃砖的厚度有关;(4)可利用玻璃砖测定玻璃的折射率.5、光导纤维全反射的一个重要应用就是用于光导纤维(简称光纤).光纤有内、外两层材料,其中内层是光密介质,外层是光疏介质. 外层是光疏介质.光在光纤中传播时,每次射到内、外两层材料的界面,都要求入射角大于临界角,从而发生全反射,这样使从一个端面入射的光,经过多次全反射能够没有损失地全部从另一个端面射出.例1:如图14-49-5所示,在折射率为n、厚度为d的玻璃平反上方的空气中有一个点光源,从S发出的光线SA以角度入射到玻璃板上表面,经过玻璃板后从下表面射出,如图所示,若沿此光线传播的光从光源到玻璃板上表面的传播时间与玻璃板中的传播时间相等,点光源S到玻璃上表面的垂直距离l应是多少?【分析】光线在空气中的传播距离为,传播事迹 c;光线在玻璃板中的传播距离为(为光线在玻璃板中的折射角),传播速度为;再考虑折射定律以及传播时间相等,即可得出所需结果.【解答】光线在空气中的传播时间为t空=光线在玻璃板中的传播时间为t玻=根据题意有 ,由折射定律sin=nsin,sin=sin.cos=.将式代入式可得,l=【答案】【归纳】此题主要应用折射定律和折射率公式来求解.注意光在玻璃平板中运动的路程和速度均与折射率有关.例2:一个截截面为半圆形的光学元件,其材料的折射率为n=,一束平行光以45的入射角射向其上表面,如图14-49-6所示.求:在图中标出入射光能从其半圆面上射出的范围.【分析】入射光从半圆面上射出的范围形成的原因是:由于所有入射光的入射角都相同,所以射入该元件后所有的折射光线仍然平行.这些光线到达半圆周上时,入射角各不相同,当入射角大于临界角时,光线发生全反射,不能够从该元件射出;当入射角小于临界角时,光线不发生反射,能够从该元件射出.【解答】如图14-49-7所示,设平行光射入该元件后的折射角为,根据折射定律:n=,可得=30,由sin0=,不难求出临界角为0=45.设光线射到C点左边某一点A时刚好有入射角=0=45,从图中可以看出AOD中=60,所以=75;同理设光线射到C点右边某一点B时刚好有入射角=0=45,从图中可以看出BDE中的=15.只有以上得到的A、B两点间的圆弧,才能光线射出,AB弧的度数是90.【答案】从半圆面上射出的范围为图示的A、B两点间的圆弧.【归纳】解答此题的关键是要通过作图分析弄清范围形成的原因,然后计算确定范围.例3:如图14-49-8所示, a、b两细束单色光(可能是同种色光,也可能是不同色光)分别以垂直于三棱镜的一个腰的方向射入两个不同的三棱镜,已知这两个三棱镜是用同种介质材料做成的,但它们的项角、大小不同,两条光线分别从另一个腰射出后,测得跟入射光线方向相比,它们的偏折角大小相同.试判定a、b两种单色光的频率v1、v2间的关系.【分析】不能因为它们的偏折角相同就断定它们是同种色光,因为它们的项角、大小不同,它们在从另一腰射出时的入射角也就不同的.具体的解法可以有两种.【解答】方法一:可以用“对比”的思路.设想让a光也和b光一样从同一点垂直于第二个三棱镜的一个腰射入,很明显,跟原来相比,当a光射到另一个腰上时的入射角由增大到了.由于同一种色光对同一种介质n没有改变,入射角增大,折射角和偏折角也必然同时增大,所以光射出时的偏折角将大于原来的,其光线将如图14-49-9(a)所示,此图中a,b两种单色光射到另一腰时的入射角相同(都是),比较它们的偏折程度可以看出a光的偏折角更大,因此可以a光的频率比b光的频率高.方法二:可以用计算的方法.如图14-49-9( b),设三棱镜的顶角为,则光线从一腰垂直射入,到达另一腰时的入射角也是,由于偏折角为,所以折射角为+.根据折射率的定义,可以推导出折射率的计算式为n=由于两种情况下偏折角是相同的,小的cot反而大,对应的n也大.由本题的已知条件,得到a光的折射率大,因此a光的频率比b光的频率高.【答案】v1v2.【归纳】在折射现象中,光的频率的高低反映在折射率的大小上.考题回放例1 简述光的全反射现象及临界角的定义,并导出折射率为n的玻璃对真空的临界角公式.【分析】本题是要在对临界角的定义加以叙述的基础上,运用折射定律导出临界角公式.临界角的定义必须清楚.【解答】光线从光密介质射向光疏介质时,折射角大于入射角.若入射角增大到某一角度C,使折射角达到90,折射光就消失.入射角大于C时只有反射光.这种现象称为全反射.相应的入射角C叫做临界角.光线由折射率为n的玻璃到真空,折射定律为sinr=nsini. 其中i和r分别为入射角和折射角.当入射角I等于临界角C时,折射角r等于90,代入式得sinC= 【归纳】这道题在2000年、2001年连续两年的高考卷中出现,可见临界角是几何光学中的一个非常重要的概念,复习中应加以重视.例2:如图14-49-10,a和b都是厚度均匀的平玻璃板,它们之间的夹角为,一细光束以入射角从P点射入,.已知此光束由红光和蓝光组成,则当光束透过b板后( ).A传播方向相对于入射光方向向左偏转角B传播方向相对于簇央求我方向向右偏转角C红光在蓝光的左边D红光在蓝光的右边【分析】光通过厚度均匀的平玻璃板使出射方向总是与入射方向平行,折射率越大发生的侧移越大.【解答】光束透过a板后,传播方向与入射光方向平行;光束透过b板后,传播方向也与入射方向平行,相对于入射光方向产不发生偏转.由入射光方向决定了出射光将向左侧移,因蓝光的折射率大,发生的侧移也就大,所以红光在蓝光的右边.【答案】D.例3:雨过天晴,人们常看到天空中出现彩虹,它是由阳光照射到空中弥漫的水珠上时出现的现象.在说明这个现象时,需要分析光线射入水珠后的光路.一细束光线射入水珠,水珠可视为一个半径为R的球,球心O到入射光线的垂直距离为d.水的折射率为n.(1)在图14-49-11上画出该束光线射入水珠内经一次反射后又从水珠中射出的光路图;(2)求这束光线从射向水珠第一次偏转的角度.【分析】光线射入水珠内经一次反射后又从水珠中射出的光路具有一定的对称性,再结合反射定律、折射定律和几何关系便可求出每一次偏转的角度.【解答】(1)光路如图14-49-12甲.(2)以i、r表示入射光的入射角、折射角,由折射定律sini=nsinr. 以1、2、3表示每一次偏转的欠度,如图14-49-12乙,由反射定律、折射定律和几何关系可知 sini= 1=I-r. 2=-2r, 3=I-r. 由以上各式解得 1=sin-1 2=-2sin-1, 3=sin-1 【分析】见三式.【归纳】此题考的是应用折射定律分析生活中的光学现象,通过题中的作光路图和偏转的角度的计算可命名我们知道彩虹形成的原因.题中虽然没有要解释现象,但实际上考查的是应用物理知识解释现象的能力.例1:如图14-49-13,一玻璃柱体的横截面为半圆形,细的单色光束从空气射向柱体的O点(半圆的圆心),产生反射光束1和透射光束2,已知玻璃折射率为,入射角为45(相应的折射角为24),现保持入射光不变,将半圆柱绕通过O点垂直于图面的轴线顺时针转过15,如图中虚线所示,则( B、C )A光束1转过15B光束1转过30C光束2转过的角度小于15D光束2转过的角度大于15【分析】当半圆柱绕通过O点垂直于图面的轴线顺时针旋转时,反射光束1转过的角度总等于反射面转过的角度的两倍。透射光束2转过的角度可由折射定律计算得到.【解答】当半圆柱绕通过O点垂直于图面的轴线顺时针转过15时,入射角I=60根据折射定律sini=nsinr,得r=30.则光束2转过的角度为9.【答案】B、C.【反思】此题综合考查了反射定律、折射定律的应用.明确入射角、反射角、折射角及其变化是解题的关键.例5:如图14-49-14所示,只含黄光和紫光的复色光束PO,沿半径方向射入的空气中的玻璃圆柱扣,被分成两光束OA和OB沿如图所示方向射出,则( ).AOA为黄光,OB为紫光BOA为紫光,OB为黄光COA为黄光,OB为复色光DOA为紫光,OB为复色光【分析】当复色光束PO入射到玻璃半圆柱与空气的分界面时,出射光只有一束,这表明其中一种色光已发生了全反射,不然黄光和紫光经玻璃半圆柱折射后会发生色散而分解为两束出射光.【解答】因为紫光比黄光在玻璃中的折射率大,发生全反射的临界角小,故已发生了全反射的必是紫光,OA为黄光.而在反射光OB里既有紫光又有黄光,故为复色光.【答案】C.【反思】此题综合考查了反射、折射、全反射、色散等知识,要考虑各种现象发生的条件,运用逻辑推理进行综合判断.特别要注意的是紫光发生了全反射,但反射光束OB里并不全是紫光,逻辑思维要严密.探究延伸例 如图14-49-15所示,AB为一块透明的光学材料左侧的端面,建立直角坐标系如图,设该光学材料的折射率沿y轴正方向均匀减小.现有束单色光a从原点O以某一入射角由空气射入该材料内部,则该光线在该材料内部可能的光路是图14-49-16中的哪一个?( ) 【分析】如图14-49-17所示,由于该材料折射率由下向上均匀减小,可以设想将它分割成折射率不同的薄层.光线射到相邻两层押介面时,如果入射角小于临界角,则射入上一层后折射角大于入射角,光线逐渐偏离法线.到达更上层的界面时入射角逐渐增大,当入射角达到临界角时发生全反射,光线开始向下返回,直到从该材料中射出.【解答】通过上述分析可知光线在该材料内部最有可能的光路是D,其余光路均不符合折射定律.【答案】D.【点评】此题中的对折射率连续变化的介质情景采用了分割的处理方法. 亦可将其与形成海面上蜃景的介质分布情形相类比从得出答案.有兴趣的同学还可去进一步研究一下光的传播路径是一条什么曲线.随堂闯关1、如图14-49-18所示,一束光线从折射率为1.5的玻璃内射向空气,在界面上的入射角为45,下面四个光路图中,正确的是( A ).【提示】当光从光密介质射向光疏介质时,很可能发生全反射现象.玻璃的折射率为n=1.5,全反射临界角为C=arcsin,从图可知入射角=45C.故发生全反射,即A图正确.2、如图14-49-19所示,一细束红光和一细束蓝光平行射到同一个三棱镜上,经折射后交于光习上的同一个点M,若用n1和n2分别表示三棱镜对红光和蓝光的折射率,下列说法中正确的是( B ).An1n2,a为红光,b为蓝光Bn1n2,a为蓝光,b为红光Cn1n2,a为红光,b为蓝光An1n2,a为蓝光,b为红光【提示】由图可知,b光线经过三棱镜后的偏折角较小,折射率较小,应是红光.3、如图14-39-20所示,自行车的尾灯采用了全反射棱镜的原理.它虽然本身不发光,但在夜间骑行时,从后面开来的汽车发出的强光照到尾灯后,会有较强的光被反射回去,使汽车司机注意到前面有自行车.尾灯的原理如图所示,下面说法中正确的是( C ).A汽车灯光应从左面射过来在尾灯的左表面发生全反射B汽车灯光应从左面射过来在尾灯的右表面发生全反射C汽车灯光应从右面射过来在尾灯的左表面发生全反射D汽车灯光应从右面射过来在尾灯的右表面发生全反射【提示】利用全反射棱镜使入射光线偏折180,光线应该从斜边入射,在两个直角边上连续发生两次全反射,所以选C.4、如图14-49-21所示,用透明材料做成一长方体形的光学器材,要求从上表面射入的光线可能从右侧面射出,那么所选的材料的折射率应满足( B ).A折射率必须大于B折射率必须小于C折射率可取大于1的任意值D无论折射率是多大都不可能【提示】从图中可以看出,为使上表面射入的光线经两次折射后从右侧面射出,1和2都必须小于临界角C,即1C,2C,而1+2=90,故C45,n=,选B答案.5、如图14-49-22所示的是一种恒偏向棱镜,其折射率n=1.56,一条光线从a点进入棱镜,然后在棱镜中沿光路ab行进,ab平行cd.(1)从棱镜的左外方开始,绘出这条光线经过棱镜后折射到空气中的光路图;(2)试证明在空气中原来的入射方向和最后出射方向间夹角为.【提示】(1)根据折射定律计算知:1=2=51,作光路图如图14-49-23所示.(2)设出射线对入射线的偏向角为,由图可知=gab+gha=(1-30)+90-(1-30)=90.即与入射角大小无关.因此从ca面入射的光其出射方向对入射方向的偏转恒为90.说明:许多光学仪器常利用这种棱镜作光路控制.注意光行进至de面时会发生全反射现象.6、 图14-49-24为用透明物质做成的空心球,其折射率为n,内、外半径分别为a、b,且ba.内表面涂上能完全吸光的物质.当一束平行光射向此球时被内表面吸收掉的光束在射进空心球前的横截面积是多大?【提示】被球内表面吸收的光束的边缘光线与内表面相切,如图14-49-25中AB所示,并据对称性知,此光束在射入空心球前的横截面积是半径为R的圆,且R=bsini.由折射定律得n=,R=nbsin.又sin=,.【答案】n2a2.课后测试一、选择题1、一束光从空气射向折射率n=的某种玻璃的表面,如图14-49-26所示,i代表入射角,则( B、C、D )A当I45时会发生全反射现象B无论入射角多大,折射角r都不会超过45C当入射角30,应以45的角度入射D当入射角i=arctan时,反射入光线折射光线恰好相互垂直【提示】光是从光疏进入光密介质,不会发生会反射现象,但折射角总小于临界角.2、图14-49-27表示一束白光通过三棱镜的光路图,其中正确的是( D ).【提示】光在第一个界面上折射时,就应发生色散现象.3、光线在玻璃和空气的分界面上发生全反射的条件是( B ).A光从玻璃射到分界面上,入射角足够小B光从玻璃射到分界面上,入射角足够大C光从空报射到分界面上,入射角足够小D光从空气射到分界面上,入射角足够大【提示】全反射条件是光从光密进入光疏,入射角大于等于临界角.4、单色光从真空射入下班时,它的( D ).A波长变长、波速变小 B.波长变短、波速变大C波长变长、波速变大 D.波长变短、波速变小【提示】光从一种介质进入另一种介质时,频率不变.5、如图14-49-28所示,两块同样的玻璃直角三棱镜ABC,两者的AC面是平行放置的,在它们之间是均匀的未知透明介质.一单色细光束O垂直于AB面入射,在图示的出射光线中( B ).A1、2、3(彼此平行)中的一任一条都有可能B4、5、6(彼此平行)中的任一条都有可能C7、8、9(彼此平行)中任一条都有可能D只能是4、6中的某一条【提示】两块直角三棱镜的AC面是平行放置的,在它们之间是均匀的未知透明介质,可将其看作两面平行的玻璃砖,利用光线通过两面平行的玻璃砖的传播特征可对选项做出判断.注意不要忽视未知透明介质的折射率等于玻璃三棱镜的折射率这一可能性,否则就会导致答案选错.6、A与B是两束平行的单色光,它们从空气中射入水中的折射分别为rA、rB,若rArB,则( A、B )A在空气中A的波长大于B的波长B在水中A的传播速度大于B的传播速度CA的频率大于B的频率D在水中A的波长小于B的波长【提示】折射角小的光折射率大,则此光的频率也大,在介质中传播速度小.7、abc为一全反射棱镜,它的主截面是等腰直角三角形,如图14-49-29所示,一束白光垂直入射到ac面上,在ab面上发生全反射,若光线入射点O的位置保持不变,改变光线的入射方向(不考虑自bc面反射的光线)( A ).A使入射光按图中的顺是针方向逐渐偏转,如果有色光射出ab面,则红光首先射出B使入射光按图中的顺时针方向逐渐偏转,如果有色光射出ab面,则紫光首先射出C使入射光按图中所示的逆时针方向逐渐偏转,红光钭首先射出ab面D使入射光按图中所示的逆时针方向逐渐偏转,紫光将首先射出ab面【提示】白光由从戏到紫七种色组成,同一种介质对它们的折射率,从红光到紫光逐渐增大.在同一种介质中产生全反射,它们的临界不同.由公式sinC=,n越小,C越大.红光折射率最小,则临界角最大.光垂直入射ac面,在ab面发生全反射,则临界角C45.当光沿顺时针方向偏转入射,其入射角C减小,如图(1)所示,首先小到红光临界角以下,红光先射出ab面.当光沿逆时针方向偏转入射,其入射角增大,不可能有光线在ab面上射出.如图14-49-30(2)所示.8、如图14-49-31所示,为了观察门外情况,有人在门上开一小圆孔,将一块圆形玻璃嵌入其中,圆柱体体轴线与门面垂直.从圆柱底面中心看出去,可以看到的门外入射光线与轴线间的最大夹角称做视场角.已知该玻璃的折射率为n,圆柱长为l,底面半径为r,则视场角是( B ).Aarcsin= B.arcsin=C.arcsin D.arcsin二、填空题9、白光通过玻璃三棱镜,被分解成七种单色光,其排列顺序是红、橙、黄、绿、蓝、靛、紫.其中紫色光偏折角度最大,紫色光在玻璃中的折射角最小,红色光在玻璃中传播速度最大.10、做测量玻璃折射率的实验时,得到了如图14-49-32所示的光路.为了测量入射角和折射角,作法线时将法线画得与界面不垂直,由这样量的角i和r算出的折射率与真实值比较偏大(填“大”或“小”).【提示】可借助三角函数图象来比较.11、如图14-49-33所示,有一个长方形容器,高为30cm,宽为40cm,在容器的底部平放着一把长40cm的刻度尺,眼睛在OA的延长线上的E点观察崇高 线沿着EA斜向下看恰能看到尺的左端零刻度.现保持眼睛的位置不变,向容器的内倒入某种液体且满至容器口,这时眼睛仍沿EA方向观察,恰能看到尺上的20cm刻度.则此种液体的折射率为1.44.【提示】作光路图如图14-49-34所示,sini= n=三、计算题12、如图14-38-35所示,ABC是一等腰直角棱镜,PD为一条入射光线,用插针方法得到其经过棱镜后的出射光线为EF,EFPD,用作图方法做出该光线在棱镜中的光路.【提示】有同学认为连接DE即为光在棱镜的路线,这是违背光的传播规律的.根据入射和出射信息判断,光在底边一定发生了全反射.怎样确定与入射和出射光线对应的“反射点”是解决问题的关键.采取虚拟物点的方法解
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!