资源描述
第九章 不等式与不等式组9.3 一元一次不等式教学备注【自学指导提示】学生在课前完成自主学习部分组学习目标:1.理解一元一次不等式组及不等式组的解集的概念,会解出两个一元一次不等式组成的不等式组,并会用数轴确定解集,提高归纳推理能力.2.通过独立思考及小组合作,总结不等式组的解法,进一步掌握数形结合思想.3.激情投入,全力以赴,享受学习成功的快乐.重点:一元一次不等式组的解法.难点:用数轴表示一元一次不等式组的解集.自主学习一、知识链接1.什么是一元一次不等式?2.解一元一次不等式的步骤是怎样的?3.在数轴上表示一元一次不等式解集的方法是什么?二、新知预习1.什么是一元一次不等式组?2.解一元一次不等式组的步骤是什么?三、自学自测1.下列各选项是一元一次不等式组的是( )A. B. C. D.四、我的疑惑_教学备注配套PPT讲授1.情景引入(见幻灯片3)2.探究点1新知讲授(见幻灯片4-8)3.探究点2新知讲授(见幻灯片9-18)课堂探究1、 要点探究探究点1:一元一次不等式组的概念及解集问题1:一个长方形足球场的宽为70m,如果它的周长大于350m,面积小于7630m2,求这个足球场的长的取值范围,并判断这个足球场是否可以进行国际足球比赛(注:用于国际足球比赛的足球场的长在100至110m之间,宽在64至75m之间).如果设足球场的长为x m,那么它的周长就是 m,面积为 m2.根据已知条件,我们知道x的取值范围要使 和 这两个不等式同时成立. 问题2:将问题1中得到的两个一元一次不等式用“”联立起来,便组成一元一次不等式组 .问题3:问题2中的一元一次不等式组的解集与问题1中的两个一元一次不等式的解集有何关系?判一判:判断下列不等式组是否为一元一次不等式组:探究点2:一元一次不等式组的解法问题1:通常我们运用数轴表示不等式的解集,那么我们能用它直接表示不等式组的解集吗?试一试:用数轴表示出不等式组的解集.问题2:解由两个一元一次不等式组成的不等式组,在取各不等式的解的公共部分时,有几种不同情况?典例精析例1.解不等式组: 例2.解不等式组:例3.解不等式组:例4.已知不等式组的解集为1x1,则(a+1)(b-1)的值为多少? 教学备注配套PPT讲授3.探究点2新知讲授(见幻灯片9-18)4.探究点3新知讲授(见幻灯片19-22)5.课堂小结探究点3:一元一次不等式组的应用问题1:3个小组计划在10天内生产500件产品(每天生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务.每个小组原先每天生产多少件产品?归纳总结:列一元一次不等式组解实际问题的一般步骤:(1)审题;(2)设未知数,找不等量关系;(3)根据不等关系列不等式组;(4)解不等式组;(5)检验并作答.典例精析例5.用若干辆载重量为 8 t 的汽车运一批货物,若每辆汽车只装 4 t ,则剩下 20 t 货物;若每辆汽车装满 8 t,则最后一辆汽车不满也不空.请你算一算:有多少辆汽车运这批货物?二、课堂小结一元一次不等式组一元一次不等式组的概念及其解集解一元一次不等式组教学备注配套PPT讲授6.当堂检测(见幻灯片23-29)当堂检测1.选择下列不等式组的正确解集(1) A.x-1 B.x2 C.-1x2 D.无解 (2) A.x-1 B.x2 C.-1x2 D.无解 (3) A.x-1 B.x2 C.-1x2 D.无解 (4) A.x-1 B.x2 C.-1x2 D.无解 2.解不等式组:3.解不等式组:4. x取哪些整数值时,不等式2-x0与都成立?5.把一篮苹果分给几个学生,若每人分4个,则剩余3个;若每人分6个,则最后一个学生最多分2个,求学生人数和苹果分别是多少?6.某校今年冬季烧煤取暖时间为4个月.如果每月比计划多烧5吨煤,那么取暖用煤量将超过100吨;如果每月比计划少烧5吨煤,那么取暖用煤总量不足68吨.若设该校计划每月烧煤 x t,求x的取值范围.7.已知方程组的解x,y的值都是正数,且xy,求m的取值范围.
展开阅读全文