资源描述
专题能力训练6函数与方程及函数的应用一、能力突破训练1.f(x)=- +log2x的一个零点落在下列哪个区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)2.设函数f(x)的零点为x1,函数g(x)=4x+2x-2的零点为x2,若|x1-x2|,则f(x)可以是()A.f(x)=2x-B.f(x)=-x2+x-C.f(x)=1-10xD.f(x)=ln(8x-2)3.如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4 m和a m(0a12),不考虑树的粗细.现用16 m长的篱笆,借助墙角围成一个矩形花圃ABCD,设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位:m2)的图象大致是()4.已知M是函数f(x)=e-2|x-1|+2sinx-12在区间-3,5上的所有零点之和,则M的值为()A.4B.6C.8D.105.已知函数f(x)是奇函数,且满足f(2-x)=f(x)(xR),当00),雨速沿E移动方向的分速度为c(cR).E移动时单位时间内的淋雨量包括两部分:P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与|v-c|S成正比,比例系数为110;其他面的淋雨量之和,其值为.记y为E移动过程中的总淋雨量.当移动距离d=100,面积S=时,(1)写出y的表达式;(2)设0v10,02,函数g(x)=3-f(2-x),则函数y=f(x)-g(x)的零点个数为()A.2B.3C.4D.513.设函数f(x)=2x-a,x1,4(x-a)(x-2a),x1.(1)若a=1,则f(x)的最小值为;(2)若f(x)恰有2个零点,则实数a的取值范围是.14.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=10.8-130x2,010.(1)写出年利润W(单位:万元)关于年产量x(单位:千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大.(注:年利润=年销售收入-年总成本)15.甲方是一农场,乙方是一工厂,由于乙方生产须占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付的情况下,乙方的年利润x(单位:元)与年产量q(单位:t)满足函数关系:x=2 000q.若乙方每生产一吨产品必须赔付甲方s元(以下称s为赔付价格).(1)将乙方的年利润w(单位:元)表示为年产量q(单位:t)的函数,并求出乙方获得最大利润的年产量;(2)在乙方年产量为q(单位:t)时,甲方每年受乙方生产影响的经济损失金额y=0.002q2(单位:元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s是多少?专题能力训练6函数与方程及函数的应用一、能力突破训练1.B解析 由题意得f(x)单调递增,f(1)=-10,所以f(x)=- +log2x的零点落在区间(1,2)内.2.C解析 依题意得g14=2+12-20,则x214,12.若f(x)=1-10x,则有x1=0,此时|x1-x2|14,因此选C.3.B解析 设AD长为x cm,则CD长为(16-x)cm,又因为要将点P围在矩形ABCD内,所以ax12,则矩形ABCD的面积S=x(16-x).当0a8时,当且仅当x=8时,S=64,当8a12时,S=a(16-a),即f(a)=64,0a8,a(16-a),8a12,画出分段函数图形可得其形状与选项B接近,故选B.4.C解析 因为f(x)=e-2|x-1|+2sinx-12=e-2|x-1|-2cos x,所以f(x)=f(2-x).因为f(1)0,所以函数零点有偶数个,且两两关于直线x=1对称.当x1,5时,函数y=e-2(x-1)(0,1,且单调递减;函数y=2cos x-2,2,且在1,5上有两个周期,因此当x1,5时,函数y=e-2(x-1)与y=2cos x有4个不同的交点;从而所有零点之和为42=8,故选C.5.C解析 由函数f(x)是奇函数且满足f(2-x)=f(x)知,f(x)是周期为4的周期函数,且关于直线x=1+2k(kZ)成轴对称,关于点(2k,0)(kZ)成中心对称.当0x1时,令f(x)=ln x+2=0,得x=1e2,由此得y=f(x)在区间(-2,4上的零点分别为-2+1e2,-1e2,0,1e2,2-1e2,2,2+1e2,-1e2+4,4,共9个零点.故选C.6.3解析 令f(x)=cos3x+6=0,得3x+6=2+k,kZ,x=9+k3=(3k+1)9,kZ.则在0,的零点有9,49,79.故有3个.7.f(a)f(1)0恒成立,则函数f(x)在R上是单调递增的,因为f(0)=e0+0-2=-10,所以函数f(x)的零点a(0,1).由题意,知g(x)=1x+10,则函数g(x)在区间(0,+)上是单调递增的.又g(1)=ln 1+1-2=-10,则函数g(x)的零点b(1,2).综上,可得0a1b2.因为f(x)在R上是单调递增的,所以f(a)f(1)f(b).8.520解析 设商品价格为x元,实际付款为y元,则y=x,0x200,0.9x,200500,整理,得y=x,0x200,0.9x,200500.0.9200=180100,A商品的价格为100元.0.9500=450,B商品的价格为500元.当x=100+500=600时,y=100+0.7600=520,即若丙一次性购买A,B两件商品,则应付款520元.9.解 (1)g(x)=12|x|+2=12|x|+2,因为|x|0,所以012|x|1,即20时,由2x-12x-2=0整理,得(2x)2-22x-1=0,(2x-1)2=2,解得2x=12.因为2x0,所以2x=1+2,即x=log2(1+2).10.解 (1)由题意知,E移动时单位时间内的淋雨量为320|v-c|+,故y=100v320|v-c|+12=5v(3|v-c|+10)(v0).(2)由(1)知,当0vc时,y=5v(3c-3v+10)=5(3c+10)v-15;当cv10时,y=5v(3v-3c+10)=5(10-3c)v+15.故y=5(3c+10)v-15,0vc,5(10-3c)v+15,cv10.当0c103时,y是关于v的减函数.故当v=10时,ymin=20-3c2.当103c5时,在(0,c内,y是关于v的减函数;在(c,10内,y是关于v的增函数.故当v=c时,ymin=50c.二、思维提升训练11.A解析 由题中图象知,f(x)=0有3个根0,a,b,且a(-2,-1),b(1,2);g(x)=0有3个根0,c,d,且c(-1,0),d(0,1).由f(g(x)=0,得g(x)=0或a,b,由图象可知g(x)所对每一个值都能有3个根,因而m=9;由g(f(x)=0,知f(x)=0或c,d,由图象可以看出f(x)=0时对应有3个根,f(x)=d时有4个,f(x)=c时只有2个,加在一起也是9个,即n=9,m+n=9+9=18,故选A.12.A解析 因为f(x)=2+x,x2,所以f(2-x)=2+(2-x),2-x2f(2-x)=x2,x2,f(x)+f(2-x)=x2+x+2,x2,所以函数y=f(x)-g(x)=f(x)-3+f(2-x)=x2+x-1,x2.其图象如图所示.显然函数图象与x轴有2个交点,故函数有2个零点.13.(1)-1(2)12,12,+)解析 (1)当a=1时,f(x)=2x-1,x1,4(x-1)(x-2),x1,当x1时,2x-1(-1,1);当x1时,4(x-1)(x-2)-1,+).故f(x)的最小值为-1.(2)若函数f(x)=2x-a的图象在x0,并且当x=1时,f(1)=2-a0,所以0a2.同时函数f(x)=4(x-a)(x-2a)的图象在x1时与x轴有一个交点,所以a1,2a1.故12a1.若函数f(x)=2x-a的图象在x1时与x轴没有交点,则函数f(x)=4(x-a)(x-2a)的图象在x1时与x轴有两个不同的交点,当a0时,函数f(x)=2x-a的图象与x轴无交点,函数f(x)=4(x-a)(x-2a)的图象在x1上与x轴也无交点,不满足题意.当21-a0,即a2时,函数f(x)=4(x-a)(x-2a)的图象与x轴的两个交点x1=a,x2=2a都满足题意.综上,a的取值范围为12,12,+).14.解 (1)当010时,W=xR(x)-(10+2.7x)=98-1 0003x-2.7x.故W=8.1x-x330-10,010.(2)当00;当x(9,10时,W10时,W=98-1 0003x+2.7x98-21 0003x2.7x=38,当且仅当1 0003x=2.7x,即x=1009时,W取得最大值38.综合知:当x=9时,W取得最大值38.6,故当年产量为9千件时,该公司在这一品牌服装的生产中所获的年利润最大.15.解 (1)因为赔付价格为s元/吨,所以乙方的实际年利润为w=2 000q-sq(q0).因为w=2 000q-sq=-sq-1 000s2+1 0002s,所以当q=1 000s2时,w取得最大值.所以乙方取得最大利润的年产量q=1 000s2 t.(2)设甲方净收入为v元,则v=sq-0.002q2,将q=1 000s2代入上式,得到甲方净收入v与赔付价格s之间的函数关系式: v=1 0002s-21 0003s4.又v=-1 0002s2+81 0003s5=1 0002(8 000-s3)s5,令v=0得s=20.当s0;当s20时,v0.所以当s=20时,v取得最大值.因此甲方向乙方要求赔付价格s为20元/吨时,获最大净收入.
展开阅读全文