2019春八年级数学下册 第十七章 勾股定理 17.1 勾股定理 第1课时 勾股定理教案 (新版)新人教版.doc

上传人:sh****n 文档编号:5420619 上传时间:2020-01-29 格式:DOC 页数:2 大小:106.50KB
返回 下载 相关 举报
2019春八年级数学下册 第十七章 勾股定理 17.1 勾股定理 第1课时 勾股定理教案 (新版)新人教版.doc_第1页
第1页 / 共2页
2019春八年级数学下册 第十七章 勾股定理 17.1 勾股定理 第1课时 勾股定理教案 (新版)新人教版.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述
171勾股定理第1课时勾股定理1经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2掌握勾股定理,并运用它解决简单的计算题;(重点)3了解利用拼图验证勾股定理的方法(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形各组图形大小不一,但形状一致,结构奇巧你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】 直接运用勾股定理 如图,在ABC中,ACB90,AB13cm,BC5cm,CDAB于D,求:(1)AC的长;(2)SABC;(3)CD的长解析:(1)由于在ABC中,ACB90,AB13cm,BC5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出SABC;(3)根据面积公式得到CDABBCAC即可求出CD.解:(1)在ABC中,ACB90,AB13cm,BC5cm,AC12cm;(2)SABCCBAC51230(cm2);(3)SABCACBCCDAB,CDcm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可【类型二】 分类讨论思想在勾股定理中的应用 在ABC中,AB15,AC13,BC边上的高AD12,试求ABC的周长解析:本题应分ABC为锐角三角形和钝角三角形两种情况进行讨论解:此题应分两种情况说明:(1)当ABC为锐角三角形时,如图所示在RtABD中,BD9.在RtACD中,CD5,BC5914,ABC的周长为15131442;(2)当ABC为钝角三角形时,如图所示在RtABD中,BD9.在RtACD中,CD5,BC954,ABC的周长为1513432.当ABC为锐角三角形时,ABC的周长为42;当ABC为钝角三角形时,ABC的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意【类型三】 勾股定理的证明 探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC绕其顶点A旋转90得直角三角形AED,所以BAE90,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于RtBAE和RtBFE的面积之和根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的RtBEA和RtACD拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE面积等于RtBAE和RtBFE的面积之和进行解答;方法2:根据ABC和RtACD的面积之和等于RtABD和BCD的面积之和解答解:方法1:S正方形ACFDS四边形ABFESBAESBFE,即b2c2(ba)(ba),整理得2b2c2b2a2,a2b2c2;方法2:此图也可以看成RtBEA绕其直角顶点E顺时针旋转90,再向下平移得到S四边形ABCDSABCSACD,S四边形ABCDSABDSBCD,SABCSACDSABDSBCD,即b2abc2a(ba),整理得b2abc2a(ba),b2abc2aba2,a2b2c2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理探究点二:勾股定理与图形的面积 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是_解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D的面积和为S2,S1S2S3,即S3251210.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积三、板书设计1勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2b2c2.2勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯加菲尔德拼图”、“毕达哥拉斯图”3勾股定理与图形的面积课堂教学中,要注意调动学生的积极性让学生满怀激情地投入到学习中,提高课堂效率勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!