2019-2020年高考数学复习 专题03 立体几何 立体几何中的向量方法(二)求空间角与距离考点剖析.doc

上传人:xt****7 文档编号:4560392 上传时间:2020-01-09 格式:DOC 页数:2 大小:19.50KB
返回 下载 相关 举报
2019-2020年高考数学复习 专题03 立体几何 立体几何中的向量方法(二)求空间角与距离考点剖析.doc_第1页
第1页 / 共2页
2019-2020年高考数学复习 专题03 立体几何 立体几何中的向量方法(二)求空间角与距离考点剖析.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述
2019-2020年高考数学复习 专题03 立体几何 立体几何中的向量方法(二)求空间角与距离考点剖析主标题:立体几何中的向量方法(二)求空间角与距离副标题:为学生详细的分析立体几何中的向量方法(二)求空间角与距离的高考考点、命题方向以及规律总结。关键词:空间角,距离难度:2重要程度:4考点剖析:1能用向量方法解决直线与直线,直线与平面,平面与平面的夹角的计算问题2了解向量方法在研究立体几何问题中的应用.命题方向:对立体几何中的向量方法部分,主要以解答题的方式进行考查,而且偏重在第二问或者第三问中使用这个方法,考查的重点是使用空间向量的方法进行空间角和距离等问题的计算,把立体几何问题转化为空间向量的运算问题规律总结:1若利用向量求角,各类角都可以转化为向量的夹角来运算(1)求两异面直线a,b的夹角,须求出它们的方向向量a,b的夹角,则cos |cos|.(2)求直线l与平面所成的角,可先求出平面的法向量n与直线l的方向向量a的夹角,则sin |cos|.(3)求二面角l的大小,可先求出两个平面的法向量n1,n2所成的角,则或.2(1)利用向量夹角转化为各空间角时,一定要注意向量夹角与各空间角的定义、范围不同(2)求二面角要根据图形确定所求角是锐角还是钝角根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n1,n2的夹角是相等,还是互补,这是利用向量求二面角的难点、易错点.3.利用向量法求空间角要破“四关”利用向量法求解空间角,可以避免利用定义法作角、证角、求角中的“一作、二证、三计算”的繁琐过程,利用法向量求解空间角的关键在于“四破”第一破“建系关”,第二破“求坐标关”;第三破“求法向量关”;第四破“应用公式关”,熟记线面成的角与二面角的公式,即可求出空间角知 识 梳 理1两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则l1与l2所成的角a与b的夹角范围0,求法cos cos 2.直线与平面所成角的求法设直线l的方向向量为a,平面的法向量为n,直线l与平面所成的角为,a与n的夹角为.则sin |cos |.3求二面角的大小(1)如图,AB,CD是二面角l的两个面内与棱l垂直的直线,则二面角的大小.(2)如图,n1,n2分别是二面角l的两个半平面,的法向量,则二面角的大小满足|cos |cos|,二面角的平面角大小是向量n1与n2的夹角(或其补角)4利用空间向量求距离(供选用)(1)两点间的距离设点A(x1,y1,z1),点B(x2,y2,z2),则|AB|.(2)点到平面的距离如图所示,已知AB为平面的一条斜线段,n为平面的法向量,则B到平面的距离为|.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!