工程机械(叉车)液压系统设计

上传人:QQ40****828 文档编号:398426 上传时间:2018-07-26 格式:DOC 页数:28 大小:861.36KB
返回 下载 相关 举报
工程机械(叉车)液压系统设计_第1页
第1页 / 共28页
工程机械(叉车)液压系统设计_第2页
第2页 / 共28页
工程机械(叉车)液压系统设计_第3页
第3页 / 共28页
点击查看更多>>
资源描述
攀枝花学院液压课程设计(论文) - 0 -攀枝花学院本科课程设计(论文)液压课程设计工程机械(叉车)液压系统设计学生姓名: 黄 沙 沙 学生学号: 201210601052 院(系): 机械工程学院 年级专业: 12 级 机 制 2 班 指导教师: 杨 光 春 二一五年六月攀枝花学院液压课程设计(论文) - 1 -攀枝花学院本科学生课程设计任务书题 目 4 工程机械(叉车)液压系统设计1、课程设计的目的液压与气压传动课程设计是机制专业学生在学完液压与气压传动课程之后进行的一个重要的实践性综合练习。学生通过设计能进一步熟悉液压与气压传动的基本概念、熟悉液压元件的结构和原理以及选择、掌握液压基本回路的应用、熟悉液压系统图的绘制。能够综合运用本课程及流体力学、工程制图等相关课程的知识设计一般工程设备液压系统。同时,学生得到以下几方面的训练:1)、培养正确使用技术文件和资料的能力;2)、掌握系统方案设计的一般方法;3)、正确表达设计思想的方法和能力(绘图) 。2、课程设计的内容和要求1)、查阅文献,了解并熟悉设计工况;确定执行元件主要参数;拟定系统原理图;计算选择液压元件;验算系统性能;绘制工作图,编制技术文件;撰写课程设计说明书。2)设计原始数据见下表数据在题中另:静摩擦系数 0.2,动摩擦系数 0.1。3)要求: 每人一题,每人必须提交:系统图 1 张、课程设计说明书一份,液压缸的装配图一张、电气原理图一张。3、主要参考文献1上海市职业技术教育课程改革与教材建设委员会组编.液气压传动.北京:机械工业出版社.2001.9 2章宏甲.液压与气压传动.第 2 版.北京:机械工业出版社.2001.93许福玲.液压与气压传动.武汉:华中科技大学出版社.20014 中央电大编写小组. 液压传动辅导教材. 中央电大出版社5张世伟.液压传动系统的计算与结构设计. 宁夏人民出版社.19876成大先.机械设计手册(液压传动单行本).第 5 版.北京:化学工业出版社.2010.14、课程设计工作进度计划(1) 查阅文献,了解并熟悉设计工况;(0.5 天)(2) 确定执行元件主要参数、拟定系统原理图、计算选择液压元件;(1.5 天)(3) 验算系统性能、绘制系统图;(1.5 天 ,尺规绘图 )(4)设计油箱、集成块并绘制油箱、集成块工程图(3 天,尺规绘图)(5) 撰写课程设计说明书。 (0.5 天)指导教师(签字) 日期 年 月 日教研室意见:年 月 日学生(签字): 接受任务时间: 年 月 日攀枝花学院液压课程设计(论文) - 2 -课程设计(论文)指导教师成绩评定表题目名称 折弯机液压系统课程设计评分项目 分值 得分 评价内涵01 学习态度 6 遵守各项纪律,工作刻苦努力,具有良好的科学工作态度。02 科学实践、调研 7 通过实验、试验、查阅文献、深入生产实践等渠道获取与课程设计有关的材料。工作表现20% 03 课题工作量 7 按期圆满完成规定的任务,工作量饱满。04 综合运用知识的能力 10能运用所学知识和技能去发现与解决实际问题,能正确处理实验数据,能对课题进行理论分析,得出有价值的结论。05 应用文献的能力 5能独立查阅相关文献和从事其他调研;能提出并较好地论述课题的实施方案;有收集、加工各种信息及获取新知识的能力。06 设计(实验)能力,方案的设计能力 5能正确设计实验方案,独立进行装置安装、调试、操作等实验工作,数据正确、可靠;研究思路清晰、完整。07 计算及计算机应用能力 5 具有较强的数据运算与处理能力;能运用计算机进行资料搜集、加工、处理和辅助设计等。能力水平35%08对计算或实验结果的分析能力(综合分析能力、技术经济分析能力)10 具有较强的数据收集、分析、处理、综合的能力。09插图(或图纸)质量、篇幅、设计(论文)规范化程度5 符合本专业相关规范或规定要求;规范化符合本文件第五条要求。10 设计说明书(论文)质量 30 综述简练完整,有见解;立论正确,论述充分,结论严谨合理;实验正确,分析处理科学。成果质量45% 11 创新 10 对前人工作有改进或突破,或有独特见解。成绩指导教师评语指导教师签名: 年 月 日攀枝花学院液压课程设计(论文) - 3 -摘 要叉车也叫叉式装卸机、叉式装卸车或铲车,属于通用的起重运输机械,主要用于车站、仓库、港口和工厂等工作场所,进行成件包装货物的装卸和搬运。叉车的使用不仅可实现装卸搬运作业的机械化,减轻劳动强度,节约大量劳力,提高劳动生产力,而且能够缩短装卸、搬运、堆码的作业时间,加速汽车和铁路车辆的周转,提高仓库容积的利用率,减少货物破损,提高作业的安全程度。液压传动课程设计的目的主要有以下几点:1、综合运用液压传动课程及其他有关先修课程的理论知识和生产实际只是,进行液压传动设计实践,是理论知识和生产实践机密结合起来,从而使这些知识得到进一步的巩固、加深提高和扩展。2、在设计实践中学习和掌握通用液压元件,尤其是各类标准元件的选用原则和回路的组合方法,培养设计技能,提高学生分析和嫁接生产实际问题的能力,为今后的设计工作打下良好的基础。3、通过设计,学生应在计算、绘图、运用和熟悉设计资料(包括设计手册、产品样本、标准和规范)以及进行估算方面得到实际训练。关键词 :叉车 ,液压传动系统,液压传动课程设计攀枝花学院液压课程设计(论文) - 4 -目录1.1 概述 .61.1.1 叉车的结构及基本技术 .61.2 液压系统的主要参数确定 71.2.1 起升液压系统的参数确定 71.2.2 系统工作压力的确定 .111.2.3 起升液压系统液压缸的工况分析 111.3 液压系统原理图的拟定 .141.3.1 起升回路的设计 .141.3.2 倾斜回路的设计 161.3.3 方向控制回路的设计 171.3.4 供油方式 181.4 液压元件选择 .191.4.1 液压泵的选择 191.4.2 电机的选择 201.4.3 液压阀的选择 .211.4.4 管路的选择 221.4.5 油箱的设计 231.4.6 其他辅件的选择 .231.5 液压系统的性能验算 241.5.1 压力损失的验算 .241.5.2 系统温升验算 251.6 设计经验总结 26攀枝花学院液压课程设计(论文) - 5 -参考文献: 27攀枝花学院液压课程设计(论文) - 6 -叉车工作装置液压系统设计叉车作为一种流动式装卸搬运机械,由于具有很好的机动性和通过性,以及很强的适应性,因此适合于货种多、货量大且必须迅速集散和周转的部门使用,成为港口码头、铁路车站和仓库货场等部门不可缺少的工具。本章以叉车工作装置液压系统设计为例,介绍叉车工作装置液压系统的设计方法及步骤,包括叉车工作装置液压系统主要参数的确定、原理图的拟定、液压元件的选择以及液压系统性能验算等。1.1 概述叉车也叫叉式装卸机、叉式装卸车或铲车,属于通用的起重运输机械,主要用于车站、仓库、港口和工厂等工作场所,进行成件包装货物的装卸和搬运。叉车的使用不仅可实现装卸搬运作业的机械化,减轻劳动强度,节约大量劳力,提高劳动生产力,而且能够缩短装卸、搬运、堆码的作业时间,加速汽车和铁路车辆的周转,提高仓库容积的利用率,减少货物破损,提高作业的安全程度。1.1.1 叉车的结构及基本技术按照动力装置不同,叉车可分为内燃叉车和电瓶叉车两大类;根据叉车的用途不同,分为普通叉车和特种叉车两种;根据叉车的构造特点不同,叉车又分为直叉平衡重式叉车、插腿式叉车、前移式叉车、侧面式叉车等几种。其中直叉平衡重式叉车是最常用的一种叉车。叉车通常由自行的轮式底盘和一套能垂直升降以及前后倾斜的工作装置组成。某型号叉车的结构组成及外形图如图 1 所示,其中货叉、叉架、门架、起升液压缸及倾斜液压缸组成叉车的工作装置。叉车的基本技术参数有起重量、载荷中心矩、起升高度、满载行驶速度、满载最大起升速度、满载爬坡度、门架的前倾角和后倾角以及最小转弯半径等。攀枝花学院液压课程设计(论文) - 7 -其中,起重量(Q)又称额定起重量,是指货叉上的货物中心位于规定的载荷中心距时,叉车能够举升的最大重量。我国标准中规定的起重量系列为:0.50, 0.75, 1.25,1.50, 1.75,2.00,2.25 ,2.50, 2.75,3.00,3.50,4.00,4.50,5.00 ,6.00 ,7.00 ,8.00 ,10.00.吨。载荷中心距 e,是指货物重心到货叉垂直段前表面的距离。标准中所给出的规定值与起重量有关,起重量大时,载荷中心距也大。例如平衡重式叉车的载荷中心距如表 3-1 所示。表 1 平衡重式叉车的载荷中心距额定起重量Q/tQ1 1Q5 5 Q 10 12 Q 18 20 Q 12载荷中心距e/mm100 500 600 900 1250起升高度 hmax,指叉车位于水平坚实地面上,门架垂直放置且承受额定起重量的货物时,货叉所能升起的最大高度,即货叉升至最大高度时水平段上表面至地面的垂直距离。现有的起升高度系列为:1500,2000,2500 ,2700,3000,3300,3600,4000 ,4500,5000,5500,6000,7000mm。满载行驶速度 vmax,指货叉上货物达到额定起重量且变速器在最高档位时,叉车在平直干硬的道路上行驶所能达到的最高稳定行驶速度。满载最大起升速度 vamax,指叉车在停止状态下,将发动机油门开到最大时,起升大小为额定起重量的货物所能达到的平均起升速度。满载爬坡度 a,指货叉上载有额定起重量的货物时,叉车以最低稳定速度行驶所能爬上的长度为规定值的最陡坡道的坡度值。其值以半分数计。门架的前倾角 f及后倾角 b,分别指无载的叉车门架能从其垂直位向前和向后倾斜摆动的最大角度。最小转弯半径 Rmin,指将叉车的转向轮转至极限位置并以最低稳定速度作转弯运动时,其瞬时中心距车体最外侧的距离。在叉车的基本技术参数中,起重量和载荷中心距能体现出叉车的装载能力,攀枝花学院液压课程设计(论文) - 8 -即叉车能装卸和搬运的最重货件。最大起升高度体现的是叉车利用空间高度的情况,可估算仓库空间的利用程度和堆垛高度。速度参数则体现了叉车作业循环所需要的时间,与起重量参数一起可估算出生产率。1目的:(1)巩固和深化已学的理论知识,掌握液压系统设计计算的一般步骤和方法;(2)正确合理地确定执行机构,运用液压基本回路组合成满足基本性能要求的、高效的液压系统;(3)熟悉并运用有关国家标准、设计手册和产品样本等技术资料。2设计参数:设计一台某工程机械的液压系统,要求液压系统完成的工作循环是:工作台快进工作台 1 工进工作台 2 工进工作台快退泵卸荷、缸保压。其静、动摩擦系数分别为 0.2、0.1 ,往复运动的加减速时间要求不大于 0.2s,机械效率 为 0.92。系统参数如下表 1.1 m表 1.1 系统参数快进、快退速度(m/min)工进 1 速度(mm/min)工进 2 速度(mm/min)最大行程(mm)工进 1行程(mm)工进 2行程(mm)工作部件重量(N)4 150-200 60-65 400 200 20 4000叉车是一种起重运输机械,它能垂直或水平地搬运货物。请设计一台 X 吨叉车液压系统的原理图。该叉车的动作要求是:货叉提升抬起重物,放下重物;起重架倾斜、回位,在货叉有重物的情况下,货叉能在其行程的任何位置停住,且不下滑。提升油缸通过链条动滑轮使货叉起升,使货叉下降靠自重回位。为了使货物在货叉上放置角度合适,有一对倾斜缸可以使起重架前后倾斜。已知条件:货叉起升速度 ,下降速度最高不超过 ,加、减速时间为 t,提升1V2V油缸行程 L,额定载荷 G。倾斜缸由两个单杠液压缸组成,它们的尺寸已知。液压缸在停止位置时系统卸荷。3设计要求:攀枝花学院液压课程设计(论文) - 9 -(1) 对提升液压缸进行工况分析,绘制工况图,确定提升尺寸;(2) 拟定叉车起重系统的液压系统原理图;(3) 计算液压系统,选择标准液压元件;(4) 对上述液压系统中的提升液压缸进行结构设计,完成该液压缸的相关计算和部件装配图设计,并对其中的 12 非标零件进行零件图的设计。1.2 液压系统的主要参数确定本设计实例叉车工作装置液压系统包括起升液压系统和倾斜液压系统两个子系统,分别由起升液压缸和倾斜液压缸驱动,因此首先确定两个子系统执行元件的设计参数和系统的工作压力。1.2.1 起升液压系统的参数确定起升液压系统的作用是提起和放下货物,因此执行元件应选择液压缸。由于起升液压缸仅在起升工作阶段承受负载,在下落过程中液压缸可在负载和液压缸活塞自重作用下自动缩回,因此可采用单作用液压缸。如果把单作用液压缸的环形腔与活塞的另一侧连通,构成差动连接方式,则能够在提高起升速度的情况下减小液压泵的输出流量。如果忽略管路的损失,单作用液压缸的无杆腔和有杆腔的压力近似相等,则液压缸的驱动力将由活塞杆的截面积决定。实现单作用液压缸的差动连接,可以通过方向控制阀在外部管路上实现,如 2 图(a) 。为减小外部连接管路,液压缸的设计也可采用在活塞上开孔的方式,如 2 图(b)所示。这种测试方法有杆腔所需要的流量就可以从无杆腔一侧获得,液压缸只需要在无杆腔外部连接一条油路,而有杆腔一侧不需要单独连接到回路中。(a)管路连接方式 (b)活塞上开孔方式攀枝花学院液压课程设计(论文) - 10 -图 2 差动连接液压缸Vmax FL 缸的行程G L图 3本设计实例通过增加一个传动链条和动滑轮机构对起升装置前述设计方案进行改进,即如图 3 所示实施方案。根据传动原理,采用这一液压缸与链条和动滑轮结合的机构可以使液压缸行程减小一半,但是需要对输出力和活塞杆截面积进行校核。由于传动链条固定在叉车门架的一端,液压缸活塞杆的行程已知,但同时也要求液压缸输出的作用力为原来的两倍。即液压缸行程为 400mm,活塞杆直径变为 25mm,查液压工程手册或参考书,此时取活塞杆直径为 30mm,于是,该起升液压缸的有效作用面积变为:103.14322 6.70dAr按照前面的计算,由于液压缸所需输出的功保持不变,所以液压缸输出的攀枝花学院液压课程设计(论文) - 11 -作用力变为叉车额定负载的两倍,即F=2G=2x4000=8000液压系统所需的工作压力变为: 801.3.76LS arFPMpA取起升液压缸的工作压力为 2MPa,该工作压力对于液压系统来说属于合适的工作压力,因此起升液压缸可以采用这一设计参数。起升液压缸所需的最大流量由起升装置的最大速度决定。在由动滑轮和链条组成的系统中,起升液压缸的最大运动速度是叉车杆最大运动速度(4000mm/min)的一半,于是max1/240/2/minVin12.4706.max LvAqr 此时,起升液压缸活塞杆移动 0.4m,叉车货叉和门架移动 1m,能够满足设计需求。1.2.2 系统工作压力的确定根据液压系统工作压力的确定方法,在确定液压系统工作压力时应考虑系统的压力损失,包括沿程的和局部的压力损失,为简化计算,本设计实例中假设这一部分压力损失约为 0.05 MPa,因此液压系统应提供的工作压力应比执行元件所需的最大工作压力高出 0.05MPa,即起升液压系统 =2+0.05=2.05MPalsp1.2.3 起升液压系统液压缸的工况分析攀枝花学院液压课程设计(论文) - 12 -负载分析:负载:F=2G=2x4000=8000N最大静摩擦力:F s=2fsG=2x4000x0.2=1600N动摩擦力:F d=2fdG=2x4000x0.1=800N上升启动时:F 1=F+ Fs=8000+1600=9600N,上升稳定运行时:F 2=F+ Fd=8000+800=8800N下降稳定运行时:F 3=F- Fd=8000-800=7200N速度分析:上升速度 V=0.5V 1=0.5X200=100mm/min,快速下降最高速度 V=0.5V2=0.5X60=30mm/min加减速时间:t=0.2s上升时加减速时段位移:S 1=0.5 V 1t=10mm下降时加减速时段位移:S 2=0.5 V 2t=3mm位移分析:提升油缸行程:L=400mm工况循环提升液压缸负载:工况 负载组成 负载值(N)液压缸加速上升 0-(F+ Fs)-(F+ Fd) 0-9600-8800液压缸匀速上升 F+ Fd 8800液压缸减速上升 (F+ Fd)-F 8800-8000液压缸加速下降 F-(F- Fd) 8000-7200液压缸匀速下降 F- Fd 7200液压缸减速下降 (F- Fd)-0 7200-0对应曲线如下;F(N)(0,9600)(10,8800) (390,8800)(3,7200) (400,8800)攀枝花学院液压课程设计(论文) - 13 -(390,61740)40 S(mm)负载-位移关系曲线提升液压缸运动参数:工况 位移(mm) 时间(s) 速度(mm/s)匀加速上升 10 0.2匀速上升 380 3.8 100匀减速上升 10 0.2匀加速下降 3 0.2匀速下降 394 13 30匀减速下降 3 0.2对应曲线如下;V(mm/s)(10,100) (390,100)攀枝花学院液压课程设计(论文) - 14 -0 S(mm)(3,30) (394,30)速度-位移关系曲线1.3 液压系统原理图的拟定在完成装卸作业的过程中,叉车液压系统的工作液压缸对输出力、运动方向以及运动速度等几个参数具有一定的要求,这些要求可分别由液压系统的几种基本回路来实现,这些基本回路包括压力控制回路、方向控制回路以及速度控制回路等。所以,拟定一个叉车液压系统的原理图,就是灵活运用各种基本回路来满足货叉在装卸作业时对力和运动等方面要求的过程。1.3.1 起升回路的设计对于起升工作装置,举起货物时液压缸需要输出作用力,放下货物时,货叉和货物的重量能使叉车杆自动回落到底部,因此本设计实例起升回路采用单作用液压缸差动连接的方式。而且为减少管道连接,可以通过在液压缸活塞上钻孔来实现液压缸两腔的连接,液压缸不必有低压出口,高压油可同时充满液压缸的有杆腔和无杆腔,由于活塞两侧的作用面积不同,因此液压缸会产生提升力。起升液压缸活塞运动方向的改变通过多路阀或换向阀来实现即可。为了防止液压缸因重物自由下落,同时起到调速的目的,起升回路的回油路中必须设置背压元件,以防止货物和货叉由于自重而超速下落,即形成平衡回路。为实现上述设计目的,起升回路可以有两种方案,分别为采用液控单向阀的平攀枝花学院液压课程设计(论文) - 15 -衡回路设计方案以及采用特殊流量调节阀的设计方案,两种方案比较如下 4 图(a )和 4 图(b)所示。(a)设计方案一(b) 设计方案二图 4 起升回路两种设计方案比较攀枝花学院液压课程设计(论文) - 16 -上 4 图(a)中设计方案之一是采用液控单向阀来实现平衡控制,该设计方案能够保证在叉车的工作间歇,货物被长时间可靠地平衡和锁紧在某一位置。但采用液控单向阀的平衡回路都要求液压缸具有进油和出油两条油路,否则货叉无法在货物自重作用下实现下落,而且该设计方案无法调节货物的下落速度,因此不能够满足本设计实例的设计要求。上 4 图(b)中设计方案是采用一种特殊的流量调节阀和在单作用液压缸活塞上开设小孔实现差动连接的方式,该流量调节阀可以根据货叉载重的大小自动调节起升液压缸的流量,使该流量不随叉车载重量的变化而变化,货物越重,阀开口越小,反之阀开口越大,因此能够保证起升液压缸的流量基本不变,起到压力补偿的作用。从而有效的防止因系统故障而出现重物快速下落、造成人身伤亡等事故。而在重物很轻或无载重时,通过自身调节,该流量调节阀口可以开大甚至全开,从而避免不必要的能量损失。本设计实例采用这一设计方案限定了货叉的最大下落速度,保证了货叉下落的安全。此外,为了防止负载过大而导致油管破裂,也可在液压缸的连接管路上设置一个安全阀。由于本课题设计中没有给定倾斜装置、方向压力控制回路等等以下方面设计的主要参数,所以以下环节的设计主要参考叉车液压系统设计的相关资料1.3.2 倾斜回路的设计本设计实例倾斜装置采用两个并联的液压缸作执行元件,两个液压缸的同步动作是通过两个活塞杆同时刚性连接在门架上的机械连接方式来保证的,以防止叉车杆发生扭曲变形,更好地驱动叉车门架的倾斜或复位。为防止货叉和攀枝花学院液压课程设计(论文) - 17 -门架在复位过程中由于货物的自重而超速复位,从而导致液压缸的动作失去控制或引起液压缸进油腔压力突然降低,因此在液压缸的回油管路中应设置一个背压阀。一方面可以保证倾斜液压缸在负值负载的作用下能够平稳工作,另一方面也可以防止由于进油腔压力突然降低到低于油液的空气分离压甚至饱和蒸汽压而在活塞另一侧产生气穴现象,其原理图如下 5 图所示。倾斜液压缸的换向也可直接采用多路阀或换向阀来实现。图 5 倾斜回路原理图1.3.3 方向控制回路的设计行走机械液压系统中,如果有多个执行元件,控制多个执行元件的动作,可以采用多个普通三位四通手动换向阀,分别对系统的多个工作装置进行方向控制。本设计实例可以采用两个普通的三位四通手动换向阀分别控制起升液压缸和倾斜液压缸的动作,如图 6 所示。本设计实例叉车工作装置液压系统拟采用普通的三位四通手动换向阀控制方式,用于控制起升和倾斜装置的两个方向控制阀均可选用标准的四通滑阀。另外,还应注意采用普通换向阀实现的换向控制方式还与液压油源的供油方式有关,如果采用单泵供油方式,则无法采用几个普通换向阀结合来进行换向控制的方式,因为只要其中一个换向阀处于中位,则液压泵卸荷,无法驱动其它工作装置。攀枝花学院液压课程设计(论文) - 18 -1.3.4 供油方式由于起升和倾斜两个工作装置的流量差异很大,而且相对都比较小,因此采用两个串联齿轮泵供油比较合适。其中大齿轮泵给起升装置供油,小齿轮泵给倾斜装置供油。两个齿轮泵分别与两个三位四通手动换向阀相连,为使液压泵在工作装置不工作时处于卸荷状态,两个换向阀应采用 M 型中位机能,这样可以提高系统的效率。根据上述起升回路、倾斜回路、换向控制方式和供油方式的设计,本设计实例初步拟定的液压系统原理图如图 7 所示。图 6 普通换向阀控制方式攀枝花学院液压课程设计(论文) - 19 -M1 2 34126PTAB517 9108YA4 YA3YA5YA2YA1121-大流量泵 2-小流量泵 3-起升安全阀 4-倾斜安全阀 5-起升换向阀 6-倾斜换向阀 7-流量控制阀 8-防气穴阀 9-起升液压缸 10-倾斜液压缸 11、12-单向阀图 7 叉车工作装置液压系统原理图1.4 液压元件选择初步拟定液压系统原理图后,根据原理图中液压元件的种类,查阅生产厂家各种液压元件样本,对液压元件进行选型。1.4.1 液压泵的选择攀枝花学院液压课程设计(论文) - 20 -图 7 所示液压系统原理图中采用双泵供油方式,因此在对液压泵进行选型时考虑采用结构简单、价格低廉的双联齿轮泵就能够满足设计要求。假定齿轮泵的容积效率为 90%,电机转速为 1500r/min,则根据前述 3.3.1的计算结果,两个液压泵的排量可分别计算为: 1690351Drcm从表中可查得,CBG 系列中与 51.1cm3/r 接近的齿轮泵排量为 52cm3/rev。而 51.1cm3/r 更接近于 50.3cm3/rev,如果选择排量为 60cm3/r 的液压泵,则工作过程中会有较大的流量经过溢流阀溢流回油箱,造成能源的浪费,并有可能产生严重的发热,因此考虑在 CBG2050 系列中选择排量为 50.3cm3/rev 的齿轮泵。同时考虑到前述计算中假定液压泵的容积效率为 90%,而实际工作过程中,液压泵的容积效率可能高于 90%,尤其是在低负载的时候。在低负荷的时候,电机转速也有可能会略高于 1500 r/min,因此液压泵的实际输出流量会增大。例如,满负载条件下(电机转速 1500r/min,容积效率 90%)的实际流量为:l/min9.67101509.3.501 q而半负载条件下(电机转速 1550r/min,容积效率 93%)的实际流量为:l/min5.721015093.3.501 q大于起升回路所需要的流量 67.8 l/min,因此能够 满足设计要求。1.4.2 电机 的选择为减小叉车工作装置液压系统的尺寸,简化系统结构,对于内燃叉车、双联液压泵可以由发动机直接驱动。如果叉车上的空间允许,也可以采用电动机驱动双联液压泵的设计方式。在叉车工作过程中,为保证工作安全,起升装置和倾斜装置通常不会同时工作,又由于起升装置的输出功率要远大于倾斜装置的输出功率,因此虽然叉攀枝花学院液压课程设计(论文) - 21 -车工作装置由双联泵供油,在选择驱动电机时,只要能够满足为起升装置供油的大流量液压泵的功率要求即可。在最高工作压力下,大流量液压泵的实际输出功率为:615.107.91.5Ppqkw 齿轮泵的总效率(包括容积效率和机械效率)通常在 8085%之间,取齿轮泵的总效率为 80%,所需的电机功率为:17.521.08tPkw1.4.3 液压阀的选择图 7 中叉车工作装置液压系统由双联泵供油,因此对于起升回路,流经换向阀、单向阀、溢流阀和平衡阀的最大流量均为 67.8 l/min (半载的工况) ,各元件的额定压力应大于起升回路的最大工作压力 17.5MPa。流经倾斜回路各液压阀的流量较小,因此倾斜回路中使用的液压阀可选择比起升回路中液压阀通径更小的液压阀。在选择溢流阀时,由于溢流阀在起升回路和倾斜回路中都是做安全阀,因此其调定压力应高于供油压力 10%左右,起升回路和倾斜回路溢流阀的调定压力是不同的,按照前述计算起升回路溢流阀的调定压力设为 20MPa 比较合适,具体调定数值将在后续压力损失核算部分中做进一步计算。查阅相关液压阀生产厂家样本,确定本设计实例所设计叉车工作装置液压系统各液压阀型号及技术参数如表 2 所示。表 2 液压阀型号及技术参数规格序号 元件名称 额定流量L/min最高使用压力 MPa型号1三位四通手动换向阀 5100 31.5 4WMM6T50攀枝花学院液压课程设计(论文) - 22 -2 单向阀 11 76 21 DT8P1-06-05-103 溢流阀 3 120 31.5 DBDH6P-10/2004 单向阀 12 10 21 DT8P1-02-05-105 流量调节阀 7 67 31.5 VCDC-H-MF(G1/2)6三位四通手动换向阀 630 25 DMG-02-3C6-W7 溢流阀 4 12 21 C175-02-F-108背压阀和防气穴阀 8120 1.5MH1DBN10 P2-20/050M1.4.4 管路的选择本设计实例液压管路的直径可通过与管路连接的液压元件进出口直径来确定,也可通过管路中流速的建议值进行计算。根据上文中给出的液压管路流速推荐范围,假定液压泵排油管路的速度为5 m/s,液压泵吸油管路的速度为 1 m/s。在设计过程中也应该注意,液压系统管路中油液的流动速度也会受到油路和装置工作条件、功率损失、热和噪声的产生以及振动等各方面因素的影响。按照半载工况,大流量泵排油管路中流过的最大流量为q = L/min则管道的最小横截面积为:224560/10.72 mA24D22 30824 mDD6.17为减小压力损失,管径应尽可能选大些,所以选用管子通径为 18mm 的油管攀枝花学院液压课程设计(论文) - 23 -作排油管即可。大流量泵吸油管路中流过的最大流量为液压泵的理论流量,即,则管道的最小横截面积为:min/45.71053.5 L 25.127160/045.7 mA 22 16025.274 mD0m查液压管路管径标准,与上述计算值最接近的实际值为 40mm,因此可选用通径为 50mm 的油管做大流量泵的吸油管。1.4.5 油箱的 设计根据第 1 章油箱容积估算方法,按照贮油量的要求,初步确定油箱的有效容积vaqV有 效已知双联泵总理论流量为 L/min,对于行走工81.45675.4程机械,为减小液压系统的体积和重量,在计算油箱的有效容积时取 a = 2。因此L62.9181.452有 效V油箱整体容积为 V = =203.6L,查液压泵站油箱公称容积系列,取油箱0.8有 效整体容积为 250 L。如果油箱的长宽高比例按照 3:2:1 设计,则计算得到长、宽、高分别为a=1.010m、b=0.69m、c=0.35m。1.4.6 其他辅件的选择叉车工作装置液压系统中使用的过滤器包括油箱注油过滤器和主回油路上攀枝花学院液压课程设计(论文) - 24 -的回油过滤器。查相关厂家样本,选择型号为 EF3-40 的空气滤清器,其性能参数为:加油流量 21 L/min空气流量 170 L/min油过滤面积 180 mm2空气过滤精度 0.279 mm油过滤精度 125 m选择型号为 RF-6020L-Y 的滤油器作回油过滤器,其性能参数为:额定流量 60 L/min过滤精度 20m额定压力 1 MPa1.5 液压系统的性能验算液压系统原理图和各液压元件的型号确定后,可以对所设计叉车工作装置液压系统进行系统性能的验算。1.5.1 压力损失的验算为了能够更加准确地计算液压泵的供油压力和设定溢流阀的调定压力,分别验算由两个液压泵到起升液压缸和倾斜液压缸进口之间油路的压力损失。叉车工作装置液压系统的压力损失包括油液流过等径进油管路而产生的沿程压力损失 ,通过管路中弯管和管接头等处的管路局部压力损失 以及通1p 2p过各种液压阀的局部压力损失 。由于叉车工作装置液压系统管路较短,弯3p管和管接头较少,因此沿程压力损失 和弯管以及管接头等处的管路局部压1力损失 与经过各种液压阀的局部压力损失 相比可以忽略不计,故本设计2p3p实例主要核算经过各种液压阀的局部压力损失 。图 8 原理图表明,起升回路起升动作过程中液压阀产生的局部压力损失 主要包括由单向阀 11、换向3攀枝花学院液压课程设计(论文) - 25 -阀 5 和特殊流量调节阀 7 阀口产生的局部压力损失。对于起升回路,根据产品样本,单向阀 11(DT8P1-06-05-10)的开启压力为 0.035MPa;在流量约为 50L/min 时,手动换向阀 5(4WMM6T50)的压力损失约为 0.5MPa;在流量约为 50L/min 时,流量调节阀 7(VCDC-H-MF(G1/2))的压力损失为 0.5MPa。因此起升回路进油管路总的局部压力损失为1.035 MPa5.03.0p所以溢流阀调定压力应为15.4 MPa1.).1(取溢流阀的实际调定压力为 16MPa 是适宜的。对于倾斜回路,使货叉倾斜过程中,产生局部压力损失的液压阀有单向阀12,换向阀 6 和防气穴阀 8。根据产品样本,单向阀 12(DT8P1-02-05-10)的开启压力为 0.035MPa;在流量约为 5.4 L/min 时,手动换向阀 6(DMG-04-3C-W)的压力损失最大约为 0.15MPa;防气穴阀中单向阀( MHSV10PB1-1X/M)的开启压力为 0.05MPa 则倾斜回路进油管路总的局部压力损失为MPa235.0.15.03.p所以溢流阀实际压力应为15.8 MPa.)2.4(取溢流阀的实际调定压力为 16MPa 是适宜的。1.5.2 系统温升 验算起升回路消耗的功率远大于倾斜回路所消耗的功率,因此只验证起升回路的温升即可。对于起升油路,当叉车杆处于闲置或负载下降时,换向阀工作在中位,液压泵在低压下有 75.45L/min 的流量(理论流量)流回油箱,此时液压泵处于卸荷状态,因此液压泵损失的功率较小。当负载上升时,液压泵的大部分流量将进入液压缸。当负载上升达到顶端时,液压泵以 67.9 l/min 的额定流量从安全阀溢流回油箱,造成很大的能量损失。攀枝花学院液压课程设计(论文) - 26 -假定液压泵流量的 90%通过安全阀流失,损失的功率为:= 15.5 kW60109.79.105 36 rvrvRV qpW造成的油液温度升高可计算为: rvPRVqCT式中 液压油液的密度,取 870kg/m3液压油液的比热,对于普通的石油型液压油液,p( 0.40.5)4187 J/(kgK),取 =2.0 KJ/(kg. K)p pC如果液压系统的温度单位用摄氏度,则油液温升为 75.81069.7.2087153rvPRVqCWT上述温升满足行走机械温升范围要求,而且由于这一极端功率损失的情况只是偶尔在货叉杆上升到行程端点时才出现,因此该叉车工作装置液压系统不必设置冷却器。1.6 设计经验总结叉车类工程机械或行走机械对液压系统的要求是安全可靠、效率高、成本低,通过本设计实例,对叉车类工程机械或行走机械液压系统的设计方法和设计经验总结如下:1 采用低成本的齿轮泵做能源元件,普通的手动换向阀做控制调节元件,系统造价低。2 为保证系统工作安全,对于有垂直下落工况的液压系统,应采用必要的平衡回路;对于有超越负载(负值负载)的液压系统,应在回油路上采用必要的增加背压(防气穴)措施。3 为提高系统的工作效率,降低能耗,对于流量差别较大的支回路,应采用不同流量的液压泵分别供油的方式。攀枝花学院液压课程设计(论文) - 27 -参考文献:1王积伟 章宏甲 黄易谊 液压与气压传动 北京 机械工业出版社 20052张利平 液压传动系统及设计 北京 化学工业出版社 2005.83成大先 机械设计手册 单行本 液压传动 北京化学工业出版社 20044刘新德 液压气动手册 北京 机械工业出版社 20005杨培元 朱福元 液压系统设计简明手册 北京 机械工业出版社 1999.126许福玲.液压与气压传动. 北京:机械工业出版社,2001.087陈奎生液压与气压传动武汉:武汉理工大学出版社,2001.88蔡文彦液压传动系统上海:上海交通大学出版社,1990.49官忠范液压传动系统北京:机械工业出版社,1997.710朱新才液压与气动技术重庆:重庆大学出版社,2003.911张利平液压气动系统设计手册北京:机械工业出版社,1997.912左健民主编.液压与气压传动. 北京:机械工业出版社,2000.0613邹建华 .液压与气动技术基础. 武汉:华中科技大学出版社,2006.0314何存兴 .液压传动与气压传动. 武汉:华中科技大学出版社,2000.0815朱梅 朱光力编著 .液压与气动技术.西安:西安电子科技大学出版社,2004.06
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸设计 > 毕设全套


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!