(新课改省份专用)2020版高考数学一轮复习 第七章 立体几何 第一节 空间几何体及表面积与体积讲义(含解析).doc

上传人:xt****7 文档编号:3927212 上传时间:2019-12-29 格式:DOC 页数:10 大小:160.50KB
返回 下载 相关 举报
(新课改省份专用)2020版高考数学一轮复习 第七章 立体几何 第一节 空间几何体及表面积与体积讲义(含解析).doc_第1页
第1页 / 共10页
(新课改省份专用)2020版高考数学一轮复习 第七章 立体几何 第一节 空间几何体及表面积与体积讲义(含解析).doc_第2页
第2页 / 共10页
(新课改省份专用)2020版高考数学一轮复习 第七章 立体几何 第一节 空间几何体及表面积与体积讲义(含解析).doc_第3页
第3页 / 共10页
点击查看更多>>
资源描述
第一节空间几何体及表面积与体积突破点一空间几何体1简单旋转体的结构特征(1)圆柱可以由矩形绕其任一边旋转得到;(2)圆锥可以由直角三角形绕其直角边旋转得到;(3)圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到;(4)球可以由半圆或圆绕直径旋转得到提醒(1)球是以半圆面为旋转对象的,而不是半圆(2)要注意球面上两点的直线距离、球面距离以及在相应的小圆上的弧长三者之间的区别与联系2简单多面体的结构特征(1)棱柱的侧棱都平行且相等,上下底面是全等的多边形;(2)棱锥的底面是任意多边形,侧面是有一个公共点的三角形;(3)棱台可由平行于棱锥底面的平面截棱锥得到,其上下底面是相似多边形提醒(1)棱柱的所有侧面都是平行四边形,但侧面都是平行四边形的几何体却不一定是棱柱(2)棱台的所有侧面都是梯形,但侧面都是梯形的几何体却不一定是棱台(3)注意棱台的所有侧棱相交于一点3直观图(1)画法:常用斜二测画法(2)规则:原图形中x轴、y轴、z轴两两垂直,直观图中,x轴、y轴的夹角为45(或135),z轴与x轴和y轴所在平面垂直原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半一、判断题(对的打“”,错的打“”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥()(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台()答案:(1)(2)(3)二、填空题1在如图所示的几何体中,是棱柱的为_(填写所有正确的序号)答案:2下列命题中正确的是_由五个平面围成的多面体只能是四棱锥;棱锥的高线可能在几何体之外;仅有一组相对的面平行的六面体一定是棱台;有一个面是多边形,其余各面是三角形的几何体是棱锥答案:3一个棱柱至少有_个面;面数最少的一个棱锥有_个顶点;顶点最少的一个棱台有_条侧棱答案:5434.用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴已知四边形ABCD的面积为2 cm2,则原平面图形的面积为_ cm2.解析:依题意可知BAD45,则原平面图形为直角梯形,上下底面的长与BC,AD相等,高为梯形ABCD的高的2倍,所以原平面图形的面积为8 cm2.答案:81给出下列几个命题:在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;棱台的上、下底面可以不相似,但侧棱长一定相等其中正确命题的个数是()A0B1C2D3解析:选B错误,只有这两点的连线平行于轴时才是母线;正确;错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等故正确命题的个数是1.2给出下列命题:棱柱的侧棱都相等,侧面都是全等的平行四边形;若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;存在每个面都是直角三角形的四面体其中正确命题的序号是_解析:不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;正确,如图,正方体ABCDA1B1C1D1中的三棱锥C1ABC,四个面都是直角三角形答案:方法技巧辨别空间几何体的2种方法定义法紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本要素,根据定义进行判定反例法通过反例对结构特征进行辨析,要说明一个结论是错误的,只需举出一个反例即可针对训练1用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A圆柱B圆锥C球体D圆柱、圆锥、球体的组合体解析:选C截面是任意的且都是圆面,则该几何体为球体2下列命题正确的是()A两个面平行,其余各面都是梯形的多面体是棱台B两个面平行且相似,其余各面都是梯形的多面体是棱台C直角梯形以一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D用平面截圆柱得到的截面只能是圆和矩形解析:选C如图所示,可排除A、B选项对于D选项,只有截面与圆柱的母线平行或垂直时,截得的截面为矩形或圆,否则截面为椭圆或椭圆的一部分故选C.突破点二空间几何体的表面积与体积空间几何体的表面积与体积公式名称几何体表面积体积柱体(棱柱和圆柱)S表面积S侧2S底VSh锥体(棱锥和圆锥)S表面积S侧S底VSh台体(棱台和圆台)S表面积S侧S上S下V(S上S下)h球S4R2VR3提醒解决与几何体的面积有关问题时,务必要注意是求全面积还是求侧面积一、判断题(对的打“”,错的打“”)(1)多面体的表面积等于各个面的面积之和()(2)锥体的体积等于底面积与高之积()(3)球的体积之比等于半径比的平方()(4)简单组合体的体积等于组成它的简单几何体体积的和或差()答案:(1)(2)(3)(4)二、填空题1.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为_答案:1472以长为a,宽为b的矩形的一边所在的直线为轴旋转一周所得圆柱的侧面积为_答案:2ab3已知圆锥的表面积等于12 cm2,其侧面展开图是一个半圆,则底面圆的半径为_ cm.答案:2考法一空间几何体的表面积例1在梯形ABCD中,ABC,ADBC,BC2AD2AB2.将梯形ABCD绕AD所在直线旋转一周而形成的曲面所围成的几何体的表面积为()A4B(4)C6D(5)(2)(2019合肥质检)已知圆锥的高为3,底面半径为4,若一球的表面积与此圆锥侧面积相等,则该球的半径为()A5B.C9D3解析(1)在梯形ABCD中,ABC,ADBC,BC2AD2AB2,将梯形ABCD绕AD所在直线旋转一周而形成的曲面所围成的几何体是一个底面半径为AB1,高为BC2的圆柱减去一个底面半径为AB1,高为BCAD211的圆锥的组合体,几何体的表面积S1221221(5).(2)圆锥的底面半径r4,高h3,圆锥的母线l5,圆锥的侧面积Srl20,设球的半径为R,则4R220,R,故选B.答案(1)D(2)B方法技巧求空间几何体表面积的常见类型及思路求多面体的表面积只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积求旋转体的表面积可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系求不规则几何体的表面积通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积考法二空间几何体的体积例2(1)如图所示,已知三棱柱ABCA1B1C1的所有棱长均为1,且AA1底面ABC,则三棱锥B1ABC1的体积为()A.B.C.D.(2)如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且ADE,BCF均为正三角形,EFAB,EF2,则该多面体的体积为_解析(1)三棱锥B1ABC1的体积等于三棱锥AB1BC1的体积,三棱锥AB1BC1的高为,底面积为,故其体积为.(2)如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,BF,易求得EGHF,AGGDBHHC,则BHC中BC边的高h.SAGDSBHC1,V多面体VEADGVFBHCVAGDBHC2VEADGVAGDBHC21.答案(1)A(2)方法技巧求空间几何体的体积的常用方法公式法对于规则几何体的体积问题,可以直接利用公式进行求解割补法把不规则的图形分割成规则的图形,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算其体积等体积法一个几何体无论怎样转化,其体积总是不变的如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解等体积法也称等积转化或等积变形,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决有关锥体的体积,特别是三棱锥的体积1.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84,则圆台较小底面的半径为()A7B6C5D3解析:选A设上底面半径为r,则下底面半径为3r,截得圆台的大圆锥母线为l,则,l,由3rr84,解得r7.2.如图,已知正方体ABCDA1B1C1D1的棱长为1,则四棱锥A1BB1D1D的体积为_解析:正方体ABCDA1B1C1D1的棱长为1,矩形BB1D1D的长和宽分别为1, .四棱锥A1BB1D1D的高是正方形A1B1C1D1对角线长的一半,即为,V四棱锥A1BB1D1DSh(1).答案:3.如图,正四棱锥PABCD的底面边长为2 cm,侧面积为8cm2,则它的体积为_ cm3.解析:记正四棱锥PABCD的底面中心为点O,棱AB的中点为H,连接PO,HO,PH,则PO平面ABCD,因为正四棱锥的侧面积为8 cm2,所以842PH,解得PH2,在RtPHO中,HO,所以PO1,所以VPABCDS正方形ABCDPO4 cm3.答案:4突破点三与球有关的切、接问题与球有关的组合体问题常涉及内切和外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.如球内切于正方体时,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体时,正方体的各个顶点均在球面上,正方体的体对角线长等于球的直径.球与其他旋转体组合时,通常作它们的轴截面解题;球与多面体组合时,通常过多面体的一条侧棱和球心及“切点”或“接点”作截面图进行解题.考法一与球有关的外接问题例1(1)(2019福州模拟)已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()A.B.C16D32(2)(2018成都模拟)在三棱锥PABC中,已知PA底面ABC,BAC60,PA2,ABAC,若该三棱锥的顶点都在同一个球面上,则该球的表面积为()A.B.C8D12解析(1)设该圆锥的外接球的半径为R,依题意得,R2(3R)2()2,解得R2,所以所求球的体积VR323.(2)易知ABC是等边三角形如图,作OM平面ABC,其中M为ABC的中心,且点O满足OMPA1,则点O为三棱锥PABC外接球的球心于是,该外接球的半径ROA.故该球的表面积S4R28.答案(1)B(2)C方法技巧处理球的外接问题的策略(1)把一个多面体的几个顶点放在球面上即为球的外接问题解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径(2)三条侧棱互相垂直的三棱锥的外接球:如果三棱锥的三条侧棱互相垂直并且相等,那么可以补形为一个正方体,正方体的外接球的球心就是三棱锥的外接球的球心;如果三棱锥的三条侧棱互相垂直但不相等,那么可以补形为一个长方体,长方体的外接球的球心就是三棱锥的外接球的球心考法二与球有关的内切问题例2(1)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切记圆柱O1O2的体积为V1,球O的体积为V2,则的值是_(2)已知正三棱锥的高为1,底面边长为2,内有一个球与四个面都相切,则棱锥的内切球的半径为_解析(1)设圆柱内切球的半径为R,则由题设可得圆柱O1O2的底面圆的半径为R,高为2R,故.(2)如图,过点P作PD平面ABC于点D,连接AD并延长交BC于点E,连接PE,ABC是正三角形,AE是BC边上的高和中线,D为ABC的中心AB2,SABC3,DE1,PE.S表32333.PD1,三棱锥的体积V31.设球的半径为r,以球心O为顶点,三棱锥的四个面为底面把正三棱锥分割为四个小棱锥,则r1.答案(1)(2)1方法技巧处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作1.已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB3,AC4,ABAC,AA112,则球O的半径为()A.B2C.D3解析:选C如图,由球心作平面ABC的垂线,则垂足为BC的中点M.又AMBC,OMAA16,所以球O的半径ROA .2.已知一个圆锥底面半径为1,母线长为3,则该圆锥内切球的表面积为()AB.C2D3解析:选C依题意,作出圆锥与球的轴截面,如图所示,设球的半径为r,易知轴截面三角形边AB上的高为2,因此,解得r,所以圆锥内切球的表面积为422,故选C.3.已知三棱锥PABC中,ABC为等边三角形,PAPBPC3,PAPB,则三棱锥PABC的外接球的体积为()A.B.C27D27解析:选B三棱锥PABC中,ABC为等边三角形,PAPBPC3,PABPBCPAC.PAPB,PAPC,PCPB.以PA,PB,PC为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥PABC的外接球正方体的体对角线长为3,其外接球半径R.因此三棱锥PABC的外接球的体积V3.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!