(浙江专版)2019年高考数学一轮复习 专题3.2 导数的运算(讲).doc

上传人:xt****7 文档编号:3925067 上传时间:2019-12-29 格式:DOC 页数:7 大小:168KB
返回 下载 相关 举报
(浙江专版)2019年高考数学一轮复习 专题3.2 导数的运算(讲).doc_第1页
第1页 / 共7页
(浙江专版)2019年高考数学一轮复习 专题3.2 导数的运算(讲).doc_第2页
第2页 / 共7页
(浙江专版)2019年高考数学一轮复习 专题3.2 导数的运算(讲).doc_第3页
第3页 / 共7页
点击查看更多>>
资源描述
第02节 导数的运算【考纲解读】考 点考纲内容5年统计分析预测导数的运算会用基本初等函数的导数公式表和导数的四则运算法则求函数的导数,并能求简单的复合函数的导数(限于形如)的导数).2013浙江理科8,22;文科8,21;2014浙江理科22;文科21;2017浙江卷7,20;2018浙江卷22.1.导数的运算将依然以工具的形式考查;2.单独考查导数的运算题目极少.对导数的运算的考查,主要通过考查导数的几何意义、导数的应用来体现,3.备考重点: 熟练掌握基本初等函数的导数公式及导数的四则运算法则.【知识清单】基本初等函数的导数公式及导数的运算法则1. 基本初等函数的导数公式原函数导函数f(x)c(c为常数)f(x)0f(x)xn(nQ*)f(x)nxn1f(x)sin xf(x)cosxf(x)cos xf(x)sinxf(x)axf(x)axlnaf(x)exf(x)exf(x)logaxf(x)f(x)ln xf(x)2导数的运算法则(1) f(x)g(x)f(x)g(x);(2) f(x)g(x)f(x)g(x)f(x)g(x);(3)(g(x)0) (4) 复合函数的导数复合函数yf(g(x)的导数和函数yf(u),ug(x)的导数间的关系为yxyuux,即y对x的导数等于y对u的导数与u对x的导数的乘积【重点难点突破】考点1 运用导数公式进行计算【1-1】求下列函数的导数.【答案】(1);(2);(3);(4);(5)【解析】(1)方法一:由题可以先展开解析式然后再求导:.方法二:由题可以利用乘积的求导法则进行求导:=.(2)根据题意把函数的解析式整理变形可得:(5)设=3-2x,则y=(3-2x)5是由y=5与=3-2x复合而成,所以y=fx=(5)(3-2x)=54(-2)=-104=【领悟技法】1.求函数导数的一般原则如下:(1)遇到连乘积的形式,先展开化为多项式形式,再求导;(2)遇到根式形式,先化为分数指数幂,再求导;(3)遇到复杂分式,先将分式化简,再求导.2.复合函数的求导方法求复合函数的导数,一般是运用复合函数的求导法则,将问题转化为求基本函数的导数解决.分析清楚复合函数的复合关系是由哪些基本函数复合而成的,适当选定中间变量;分步计算中的每一步都要明确是对哪个变量求导,而其中特别要注意的是中间变量;根据基本函数的导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数;复合函数的求导熟练以后,中间步骤可以省略,不必再写出函数的复合过程.【触类旁通】【变式一】求下列函数的导数:(1)y(x1)(x2)(x3); (2)y3xex2xe;【答案】(1) 3x212x11.(2) (ln31)(3e)x2xln2. 【解析】(1)解法一:y(x23x2)(x3)x36x211x6,y3x212x11.解法二:y(x1)(x2)(x3)(x1)(x2)(x3)(x1)(x2)(x1)(x2)(x3)(x1)(x2)(x2x1)(x3)(x1)(x2)3x212x11.(2) y(3xex)(2x)e(3x)ex3x(ex)(2x)3xexln33xex2xln2(ln31)(3e)x2xln2.考点2 导数运算的灵活应用【2-1】【2018年天津卷文】已知函数f(x)=exlnx,为f(x)的导函数,则的值为_【答案】e【2-2】【2018届陕西省咸阳市三模】已知三次函数的图象如图所示,则_【答案】1.【解析】分析:三次函数的导函数是二次函数,图形说明二次函数的零点为1和2,根据二次函数的性质可得.详解:,由的图象知 ,故答案为1.【2-3】已知函数的导函数为,且满足,则( )A B C D【答案】B【解析】,令,得,解得,-1故选B 【2-4】数列为等比数列,其中,为函数的导函数,则A、 B、 C、 D、【答案】D【解析】,则;则.【领悟技法】(1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.【触类旁通】【变式一】已知f1(x)sin xcos x,fn1(x)是fn(x)的导函数,即f2(x)f1(x),f3(x)f2(x),fn1(x)fn(x),nN*,则f2 017(x)等于()A.sin xcos x B.sin xcos xC.sin xcos x D.sin xcos x【答案】D【变式二】【2018年高考二轮专题复习】设函数f(x)的导数为f(x),且f(x)x22xf(1),则f(2)()A. 0 B. 2C. 4 D. 8【答案】A【解析】因为,所以,令得,解得,所以,故选A.【变式三】已知函数为的导函数,则 ( )A0 B2014 C2015 D8【答案】D【解析】因为,所以,则为奇函数,且为偶函数,所以;故选D【变式四】【2018届北京市人大附中十月月考】已知函数则的值为_.【答案】1【易错试题常警惕】易错典例1: (1)若函数f(x)2x3a2,则f(x)_(2)函数y的导函数为_易错分析:f(x)6x22a.没弄清函数中的变量是x,而a只是一个字母常量,其导数为0.正确解析:(1)6x2; (2)y.温馨提醒:对函数求导,一般要遵循先化简再求导的基本原则求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.【学科素养提升之思想方法篇】近似与精确、有限与无限无限逼近的极限思想1.由可以知道,函数的导数是函数的瞬时变化率,函数的瞬时变化率是平均变化率的极限,充分说明极限是人们从近似中认识精确的数学方法.极限的实质就是无限近似的量,向着有限的目标无限逼近而产生量变导致质变的结果,这是极限的实质与精髓,也是导数的思想及其内涵.2.曲线的切线定义,充分体现了运动变化及无限逼近的思想:“两个不同的公共点两公共点无限接近两公共点重合(切点)”“割线切线”.(1)在求曲线的切线方程时,注意两个“说法”:求曲线在点P处的切线方程和求曲线过点P的切线方程,在点P处的切线,一定是以点P为切点,过点P的切线,不论点P在不在曲线上,点P不一定是切点【典例】已知函数.()求函数在点处的切线方程;()求过点的函数的切线方程.【答案】()()或【解析】试题解析:()在点处的切线的斜率函数在点处的切线方程为即()设函数与过点的切线相切于点,则切线的斜率切线方程为,即点在切线上即,解得或所求的切线方程为或.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!