资源描述
高考大题专项练一高考中的函数与导数1.(2018北京,文19)设函数f(x)=ax2-(3a+1)x+3a+2ex.(1)若曲线y=f(x)在点(2,f(2)处的切线斜率为0,求a;(2)若f(x)在x=1处取得极小值,求a的取值范围.解(1)因为f(x)=ax2-(3a+1)x+3a+2ex,所以f(x)=ax2-(a+1)x+1ex,f(2)=(2a-1)e2.由题设知f(2)=0,即(2a-1)e2=0,解得a=12.(2)由(1)得f(x)=ax2-(a+1)x+1ex=(ax-1)(x-1)ex.若a1,则当x1a,1时,f(x)0.所以f(x)在x=1处取得极小值.若a1,则当x(0,1)时,ax-1x-10.所以1不是f(x)的极小值点.综上可知,a的取值范围是1,+.2.(2018全国,文21)已知函数f(x)=ax2+x-1ex.(1)求曲线y=f(x)在点(0,-1)处的切线方程;(2)证明:当a1时,f(x)+e0.(1)解f(x)=-ax2+(2a-1)x+2ex,f(0)=2.因此曲线y=f(x)在(0,-1)处的切线方程是2x-y-1=0.(2)证明当a1时,f(x)+e(x2+x-1+ex+1)e-x.令g(x)=x2+x-1+ex+1,则g(x)=2x+1+ex+1.当x-1时,g(x)-1时,g(x)0,g(x)单调递增;所以g(x)g(-1)=0.因此f(x)+e0.3.已知函数f(x)=ln x+12ax2-x-m(mZ).(1)若f(x)是增函数,求a的取值范围;(2)若a0,且f(x)0,g(1)=a0,g(x)=ax-12a2+1-14a在(0,+)内单调递减.因此g(x)在(0,1)内有唯一的解x0,使得ax02=x0-1,而且当0x0,当xx0时,f(x)0.所以r(x)在(0,1)内单调递增.所以r(x)0,由f(x)0,得0x2;由f(x)0,得1x2.所以函数f(x)的单调递增区间是(0,1),(2,+),单调递减区间是(1,2).(2)由(1)可知极小值f(2)=2ln2-4,极大值为f(1)=-52.因为方程f(x)=m有三个实根,所以2ln2-4m-52.5.(2018全国,文21)已知函数f(x)=aex-ln x-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a1e时,f(x)0.(1)解f(x)的定义域为(0,+),f(x)=aex-1x.由题设知,f(2)=0,所以a=12e2.从而f(x)=12e2ex-lnx-1,f(x)=12e2ex-1x.当0x2时,f(x)2时,f(x)0.所以f(x)在(0,2)上单调递减,在(2,+)上单调递增.(2)证明当a1e时,f(x)exe-lnx-1.设g(x)=exe-lnx-1,则g(x)=exe-1x.当0x1时,g(x)1时,g(x)0.所以x=1是g(x)的最小值点.故当x0时,g(x)g(1)=0.因此,当a1e时,f(x)0.6.定义在实数集上的函数f(x)=x2+x,g(x)=13x3-2x+m.(1)求函数f(x)的图象在x=1处的切线方程;(2)若f(x)g(x)对任意的x-4,4恒成立,求实数m的取值范围.解(1)f(x)=x2+x,当x=1时,f(1)=2,f(x)=2x+1,f(1)=3,所求切线方程为y-2=3(x-1),即3x-y-1=0.(2)令h(x)=g(x)-f(x)=13x3-x2-3x+m,则h(x)=(x-3)(x+1).当-4x0;当-1x3时,h(x)0;当3x0.要使f(x)g(x)恒成立,即h(x)max0,由上知h(x)的最大值在x=-1或x=4处取得,而h(-1)=m+53,h(4)=m-203,故m+530,即m-53,故实数m的取值范围为-,-53.7.已知函数f(x)=12ax2-(2a+1)x+2ln x(aR).(1)求f(x)的单调区间;(2)设g(x)=x2-2x,若对任意x1(0,2,均存在x2(0,2,使得f(x1)0).(1)f(x)=(ax-1)(x-2)x(x0).当a0时,x0,ax-10,在区间(2,+)内,f(x)0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,+).当0a2,在区间(0,2)和1a,+内,f(x)0,在区间2,1a内,f(x)12时,01a0,在区间1a,2内,f(x)0,故f(x)的单调递增区间是0,1a和(2,+),单调递减区间是1a,2.(2)对任意x1(0,2,均存在x2(0,2,使得f(x1)g(x2)在(0,2上有f(x)maxg(x)max.由题意可知g(x)max=0,由(1)可知,当a12时,f(x)在(0,2上单调递增.故f(x)max=f(2)=2a-2(2a+1)+2ln2=-2a-2+2ln2,所以-2a-2+2ln2ln2-1.故ln2-112时,f(x)在0,1a上单调递增,在1a,2上单调递减,故f(x)max=f1a=12a-(2a+1)1a+2ln1a=-12a-2-2lna12时,12a+2lna12a+2lne-1=12a-2-2.故a12时满足题意.综上,a的取值范围为(ln2-1,+).8.设a,bR,|a|1.已知函数f(x)=x3-6x2-3a(a-4)x+b,g(x)=exf(x).(1)求f(x)的单调区间;(2)已知函数y=g(x)和y=ex的图象在公共点(x0,y0)处有相同的切线,求证:f(x)在x=x0处的导数等于0;若关于x的不等式g(x)ex在区间x0-1,x0+1上恒成立,求b的取值范围.解(1)由f(x)=x3-6x2-3a(a-4)x+b,可得f(x)=3x2-12x-3a(a-4)=3(x-a)x-(4-a).令f(x)=0,解得x=a或x=4-a.由|a|1,得a0,可得f(x)1.又因为f(x0)=1,f(x0)=0,故x0为f(x)的极大值点,由(1)知x0=a.另一方面,由于|a|1,故a+14-a,由(1)知f(x)在(a-1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时,f(x)f(a)=1在a-1,a+1上恒成立,从而g(x)ex在x0-1,x0+1上恒成立.由f(a)=a3-6a2-3a(a-4)a+b=1,得b=2a3-6a2+1,-1a1.令t(x)=2x3-6x2+1,x-1,1,所以t(x)=6x2-12x,令t(x)=0,解得x=2(舍去)或x=0.因为t(-1)=-7,t(1)=-3,t(0)=1,所以t(x)的值域为-7,1.故b的取值范围是-7,1.
展开阅读全文