2020版高考数学大一轮复习 第三章 导数及其应用 第4讲 利用导数证明不等式分层演练 文.doc

上传人:xt****7 文档编号:3909105 上传时间:2019-12-28 格式:DOC 页数:4 大小:160KB
返回 下载 相关 举报
2020版高考数学大一轮复习 第三章 导数及其应用 第4讲 利用导数证明不等式分层演练 文.doc_第1页
第1页 / 共4页
2020版高考数学大一轮复习 第三章 导数及其应用 第4讲 利用导数证明不等式分层演练 文.doc_第2页
第2页 / 共4页
2020版高考数学大一轮复习 第三章 导数及其应用 第4讲 利用导数证明不等式分层演练 文.doc_第3页
第3页 / 共4页
点击查看更多>>
资源描述
第4讲 利用导数证明不等式1(2019安徽模拟)已知f(x),则()Af(2)f(e)f(3)Bf(3)f(e)f(2)Cf(3)f(2)f(e) Df(e)f(3)f(2)解析:选D.f(x)的定义域是(0,),f(x),令f(x)0,得xe.所以当x(0,e)时,f(x)0,f(x)单调递增,当x(e,)时,f(x)f(3)f(2)故选D.2若0x1x2ln x2ln x1 Bex2ex1x1e x2 Dx2ex1x1ex2解析:选C令f(x),则f(x).当0x1时,f(x)0,即f(x)在(0,1)上单调递减,因为0x1x21,所以f(x2)f(x1),即x1 ex2,故选C3(2018高考全国卷)已知函数f(x).(1)求曲线yf(x)在点(0,1)处的切线方程;(2)证明:当a1时, f(x)e0.解:(1)f(x),f(0)2.因此曲线yf(x)在(0,1)处的切线方程是2xy10.(2)证明:当a1时,f(x)e(x2x1ex1)ex.令g(x)x2x1ex1,则g(x)2x1ex1.当x1时,g(x)1时,g(x)0,g(x)单调递增;所以g(x)g(1)0.因此f(x)e0.4(2019石家庄模拟)已知函数f(x)ex3x3a(e为自然对数的底数,aR)(1)求f(x)的单调区间与极值;(2)求证:当aln ,且x0时,x3a.解:(1)由f(x)ex3x3a,xR,知f(x)ex3,xR.令f(x)0,得xln 3,于是当x变化时,f(x),f(x)的变化情况如下表:x(,ln 3)ln 3(ln 3,)f(x)0f(x)3(1ln 3a)故f(x)的单调递减区间是(,ln 3,单调递增区间是ln 3,),f(x)在xln 3处取得极小值,极小值为f(ln 3)eln 33ln 33a3(1ln 3a)无极大值(2)证明:待证不等式等价于exx23ax1,设g(x)exx23ax1,x0,于是g(x)ex3x3a,x0.由(1)及aln ln 31知:g(x)的最小值为g(ln 3)3(1ln 3a)0.于是对任意x0,都有g(x)0,所以g(x)在(0,)内单调递增于是当aln ln 31时,对任意x(0,),都有g(x)g(0)而g(0)0,从而对任意x(0,),g(x)0.即exx23ax1,故x3a.5(2019贵州适应性考试)已知函数f(x)xln xax,aR,函数f(x)的图象在x1处的切线与直线x2y10垂直(1)求a的值和函数f(x)的单调区间;(2)求证:exf(x)解:(1)由题易知,f(x)ln x1a,x0,且f(x)的图象在x1处的切线的斜率k2,所以f(1)ln 11a2,所以a1.所以f(x)ln x2,当xe2时,f(x)0,当0xe2时,f(x)0,因为g(x)ex在(0,)上单调递增,且g(1)e10,g()e20,所以g(x)在(,1)上存在唯一的零点t,使得g(t)et0,即et(t1)当0xt时,g(x)t时,g(x)g(t)0,所以g(x)在(0,t)上单调递减,在(t,)上单调递增,所以x0时,g(x)g(t)etln t2ln 2t2220,又t0,即exf(x)6已知函数f(x)aln x,曲线yf(x)在点(1,f(1)处的切线方程为y2.(1)求a,b的值;(2)当x0且x1时,求证:f(x).解:(1)函数f(x)aln x的导数为f(x),曲线yf(x)在点(1,f(1)处的切线方程为y2,可得f(1)2b2,f(1)ab0,解得ab1.(2)证明:当x1时,f(x),即为ln x1ln x,即x2ln x0,当0x,即为x2ln x1时,g(x)g(1)0,即有f(x),当0x1时,g(x).综上可得,当x0且x1时,f(x)都成立
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!