资源描述
第七章图形的变化第28讲图形的轴对称,1轴对称与轴对称图形,对称轴,垂直平分线,垂直平分线,相等,2.轴对称变换由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样;新图形上的每一点,都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴_这样,由一个平面图形得到它的轴对称图形叫做轴对称变换一个轴对称图形可以看作以它的一部分为基础,经轴对称变换而成3画轴对称图形几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段的端点),连接这些对称点,就可以得到原图形的轴对称图形,垂直平分,1轴对称与轴对称图形的区别和联系区别:轴对称图形是一个具有特殊性质的图形,而图形的轴对称是说两个图形之间的位置关系;联系:若把轴对称的两个图形视为一个整体,则它就是一个轴对称图形;若把轴对称图形在对称轴两旁的部分视为两个图形,则这两个图形就形成轴对称的位置关系因此,它们是部分与整体、形状与位置的关系,是可以辩证地互相转化的2镜面对称原理(1)镜中的像与原来的物体成轴对称(2)镜子中的像改变了原来物体的左右位置,即像与物体左右位置互换3建立轴对称模型在解决实际问题时,首先把实际问题转化为数学模型,再根据实际以某直线为对称轴,把不是轴对称的图形通过轴对称变换补添为轴对称图形有关几条线段之和最短的问题,都是把它们转化到同一条直线上,然后利用“两点之间线段最短”来解决,D,B,A,B,识别轴对称图形,【点评】判断图形是否是轴对称图形,关键是理解、应用轴对称图形的定义,看是否能找到至少1条合适的直线,使该图形沿着这条直线对折后,两旁能够完全重合若能找到,则是轴对称图形;若找不到,则不是轴对称图形,B,D,B,作已知图形的轴对称图形,【例2】在平面直角坐标系中,已知点A(3,1),B(1,0),C(2,1),请在图中画出ABC,并画出与ABC关于y轴对称的图形,对应训练2如图,在43的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案(注:不得与原图案相同;黑、白方块的个数要相同)(1)是轴对称图形,又是中心对称图形;(2)是轴对称图形,但不是中心对称图形;(3)是中心对称图形,但不是轴对称图形,轴对称性质的应用,A,折叠问题,【点评】折叠的过程实际上就是一个轴对称变换的过程,轴对称变换前后的图形是全等图形,对应边相等,对应角相等,
展开阅读全文