资源描述
二次函数与梯形的综合问题知识点二次函数综合;梯形的性质与判定;勾股定理;教学目标1. 熟练运用所学知识解决二次函数综合问题2灵活运用数形结合思想教学重点巧妙运用数形结合思想解决综合问题;教学难点灵活运用技巧及方法解决综合问题;知识讲解考点1 二次函数的基础知识 1.一般地,如果y=ax2+bx+c(a,b,c是常数且a0),那么y叫做x的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据当b=c=0时,二次函数y=ax2是最简单的二次函数2.二次函数y=ax2+bx+c(a,b,c是常数,a0)的三种表达形式分别为:一般式:y=ax2+bx+c,通常要知道图像上的三个点的坐标才能得出此解析式;顶点式:y=a(xh)2+k,通常要知道顶点坐标或对称轴才能求出此解析式;交点式:y=a(xx1)(xx2),通常要知道图像与x轴的两个交点坐标x1,x2才能求出此解析式;对于y=ax2+bx+c而言,其顶点坐标为(,)对于y=a(xh)2+k而言其顶点坐标为(h,k),由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点考点2 梯形的性质及判定1. 梯形定义:梯形是指只有一组对边平行的四边形。平行的两边叫做梯形的底边。不平行的两边叫腰;两底之间的公垂线段叫梯形的高。梯形有无数条高。2. 梯形的性质:梯形的上下两底平行;梯形的中位线,平行于两底并且等于上下底和的一半。等腰梯形对角线相等。3. 梯形的判定:一组对边平行,另一组对边不平行的四边形是梯形。一组对边平行且不相等的四边形是梯形。4. 常用辅助线作高(根据实际题目确定);平移一腰;平移对角线;反向延长两腰交于一点;取一腰中点,另一腰两端点连接并延长;取两底中点,过一底中点做两腰的平行线。取两腰中点,连接,作中位线。5. 等腰梯形的定义:两腰相等的梯形叫做等腰梯形。6. 等腰梯形性质:等腰梯形的两条腰相等。等腰梯形在同一底上的两个底角相等。等腰梯形的两条对角线相等。等腰梯形是轴对称图形,对称轴是上下底中点的连线所在直线(过两底中点的直线)。7. 等腰梯形判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;8. 直角梯形的定义:一腰垂直于底的梯形叫直角梯形。9. 直角梯形的性质:直角梯形有两个角是直角。10. 直角梯形的判定:有两个内角是直角的梯形是直角梯形。考点3 探究梯形的一般思路解答梯形的存在性问题时,要具备分类讨论的思想及数形结合思想,要先找出梯形的分类标准,具体如下:(1)假设结论成立,分情况讨论。(2)确定分类标准:在分类时,先要找出分类的标准,一般我们会已知三个定点,再寻找另一点来构成梯形时,我们可以先将三个定点连接成三角形,然后过其中一定点作对边的平行线,以此类推的我们会作出三条平行线,而这三条平行线与要寻找点所在的线的交点即为所求的点。当然有时条件所给的会比较苛刻,比如说让我们寻找的点要满足等腰梯形或是直角梯形的形状,则我们会根据等腰梯形及直角梯形的性质再去寻找。(3)建立关系式并计算。要具体情况具体分析,通常情况下我们会利用直线的解析式联立方程组,由方程组的解为交点坐标的方法求解。例题精析例1 已知直线y3x3分别与x轴、y轴交于点A,B,抛物线yax22xc经过点A,B(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l,点B关于直线l的对称点为C,若点D在y轴的正半轴上,且四边形ABCD为梯形求点D的坐标;将此抛物线向右平移,平移后抛物线的顶点为P,其对称轴与直线y3x3交于点E,若,求四边形BDEP的面积例2如图,把两个全等的RtAOB和RtCOD方别置于平面直角坐标系中,使直角边OB、OD在x轴上已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F抛物线yax2bxc经过O、A、C三点(1)求该抛物线的函数解析式;(2)点P为线段OC上的一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)若AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),AOB在平移的过程中与COD重叠部分的面积记为S试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由例3已知二次函数的图象经过A(2,0)、C(0,12) 两点,且对称轴为直线x4,设顶点为点P,与x轴的另一交点为点B(1)求二次函数的解析式及顶点P的坐标;(2)如图1,在直线 y2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒个单位长度的速度由点P向点O 运动,过点M作直线MN/x轴,交PB于点N 将PMN沿直线MN对折,得到P1MN 在动点M的运动过程中,设P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒,求S关于t的函数关系式 图1 图2例4 如图1,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,1),ABC的面积为(1)求该二次函数的关系式;(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使以A、B、C、D为顶点的四边形为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由图1课程小结有针对性的对勾股定理、梯形的性质及判定、二次函数的基本知识进行复习,有助于为研究二次函数与梯形的综合问题提供有利的依据。在探究二次函数与梯形的综合问题时,抓住已有的信息及条件在函数图像中构造出梯形,并能运用梯形、等腰梯形或是直角梯形的性质解决问题,掌握此类问题的解题思路及技巧是解决问题的关键。例1【规范解答】(1)直线y3x3与x轴的交点为A(1,0),与y轴的交点为B(0,3)将A(1,0)、B(0,3)分别代入yax22xc,得 解得 所以抛物线的表达式为yx22x3对称轴为直线x1,顶点为(1,4)(2)如图2,点B关于直线l的对称点C的坐标为(2,3)因为CD/AB,设直线CD的解析式为y3xb,代入点C(2,3),可得b3所以点D的坐标为(0,3)过点P作PHy轴,垂足为H,那么PDHDPE由,得而DH7,所以PH3因此点E的坐标为(3,6)所以图2 图3【总结与反思】1这道题的最大障碍是画图,A、B、C、D四个点必须画准确,其实抛物线不必画出,画出对称轴就可以了2抛物线向右平移,不变的是顶点的纵坐标,不变的是D、P两点间的垂直距离等于73已知DPE的正切值中的7的几何意义就是D、P两点间的垂直距离等于7,那么点P向右平移到直线x3时,就停止平移例2【规范解答】(1)将A(1,2)、O(0,0)、C(2,1)分别代入yax2bxc,得 解得, 所以(2)如图2,过点P、M分别作梯形ABPM的高PP、MM,如果梯形ABPM是等腰梯形,那么AMBP,因此yAy MyPyB直线OC的解析式为,设点P的坐标为,那么解方程,得,x2的几何意义是P与C重合,此时梯形不存在所以图2 图3(3)如图3,AOB与COD重叠部分的形状是四边形EFGH,作EKOD于K设点A移动的水平距离为m,那么OG1m,GBm在RtOFG中,所以在RtAHG中,AG2m,所以所以在RtOEK中,OK2 EK;在RtEHK中,EK2HK;所以OK4HK因此所以所以于是因为0m1,所以当时,S取得最大值,最大值为【总结与反思】1如果四边形ABPM是等腰梯形,那么AB为较长的底边,这个等腰梯形可以分割为一个矩形和两个全等的直角三角形,AB边分成的3小段,两侧的线段长线段2AOB与COD重叠部分的形状是四边形EFGH,可以通过割补得到,即OFG减去OEH3求OEH的面积时,如果构造底边OH上的高EK,那么RtEHK的直角边的比为124设点A移动的水平距离为m,那么所有的直角三角形的直角边都可以用m表示例3【规范解答】解:(1)设抛物线的解析式为,代入A(2,0)、C(0,12) 两点,得 解得 所以二次函数的解析式为,顶点P的坐标为(4,4)(2)由,知点B的坐标为(6,0)假设在等腰梯形OPBD,那么DPOB6设点D的坐标为(x,2x)由两点间的距离公式,得解得或x2如图3,当x2时,四边形ODPB是平行四边形所以,当点D的坐标为(,)时,四边形OPBD为等腰梯形图3 图4 图5(3)设PMN与POB的高分别为PH、PG在RtPMH中,所以在RtPNH中,所以 如图4,当0t2时,重叠部分的面积等于PMN的面积此时如图5,当2t4时,重叠部分是梯形,面积等于PMN的面积减去PDC的面积由于,所以此时【总结与反思】1第(2)题可以根据对边相等列方程,也可以根据对角线相等列方程,但是方程的解都要排除平行四边形的情况2第(3)题重叠部分的形状分为三角形和梯形两个阶段,临界点是PO的中点例4【规范解答】(1)因为OC1,ABC的面积为,所以AB设点A的坐标为(a,0),那么点B的坐标为(a,0)设抛物线的解析式为,代入点C(0,1),得解得或因为二次函数的解析式中,所以抛物线的对称轴在y轴右侧因此点A、B的坐标分别为,所以抛物线的解析式为(2)如图2,因为,所以因此AOCCOB所以ABC是以AB为斜边的直角三角形,外接圆的直径为AB因此m的取值范围是m 图2 图3 图4(3)设点D的坐标为如图3,过点A作BC的平行线交抛物线于D,过点D作DEx轴于E因为,所以因此解得此时点D的坐标为过点B作AC的平行线交抛物线于D,过点D作DFx轴于F因为,所以因此解得此时点D的坐标为综上所述,当D的坐标为或时,以A、B、C、D为顶点的四边形为直角梯形【总结与反思】1根据ABC的面积和AB边上的高确定AB的长,这样就可以把两个点的坐标用一个字母表示2数形结合,根据点A、B、C的坐标确定OA、OB、OC间的数量关系,得到AOCCOB,从而得到ABC是以AB为斜边的直角三角形,AB是它的外接圆直径,再根据对称性写出m的取值范围3根据直角梯形的定义,很容易确定符合条件的点D有两个,但是求点D的坐标比较麻烦,根据等角的正切相等列方程相对简单一些
展开阅读全文