西安电子科技大学数学建模讲义第三讲.ppt

上传人:zhu****ei 文档编号:3586285 上传时间:2019-12-18 格式:PPT 页数:75 大小:1.40MB
返回 下载 相关 举报
西安电子科技大学数学建模讲义第三讲.ppt_第1页
第1页 / 共75页
西安电子科技大学数学建模讲义第三讲.ppt_第2页
第2页 / 共75页
西安电子科技大学数学建模讲义第三讲.ppt_第3页
第3页 / 共75页
点击查看更多>>
资源描述
数学建模讲义,主讲人:穆学文,西安电子科技大学数学系Email:mxw1334,第三讲微分方程模型,动态模型,描述对象特征随时间(空间)的演变过程,分析对象特征的变化规律,预报对象特征的未来性态,研究控制对象特征的手段,根据函数及其变化率之间的关系确定函数,微分方程建模,根据建模目的和问题分析作出简化假设,按照内在规律或用类比法建立微分方程,主要内容,生物单种群增长模型3.1人口增长模型3.2传染病模型生物多种群增长模型3.3正规战与游击战3.4捕食系统的Volterra方程,为了保持自然资料的合理开发与利用,人类必须保持并控制生态平衡,甚至必须控制人类自身的增长。本节将建立几个简单的单种群增长模型,以简略分析一下这方面的问题。一般生态系统的分析可以通过一些简单模型的复合来研究,大家若有兴趣可以根据生态系统的特征自行建立相应的模型。,美丽的大自然,种群的数量本应取离散值,但由于种群数量一般较大,为建立微分方程模型,可将种群数量看作连续变量,甚至允许它为可微变量,由此引起的误差将是十分微小的。,离散化为连续,方便研究,3.1如何预报人口的增长-Malthus模型与Logistic模型,背景,世界人口增长概况,中国人口增长概况,研究人口变化规律,控制人口过快增长,指数增长模型马尔萨斯提出(1798),常用的计算公式,x(t):时刻t的人口,基本假设:人口(相对)增长率r是常数,不考虑移民,今年人口x0,年增长率r,k年后人口,随着时间增加,人口按指数规律无限增长,Malthus模型实际上只有在群体总数不太大时才合理,到总数增大时,生物群体的各成员之间由于有限的生存空间,有限的自然资源及食物等原因,就可能发生生存竞争等现象。,所以Malthus模型假设的人口净增长率不可能始终保持常数,它应当与人口数量有关。,指数增长模型的应用及局限性,与19世纪以前欧洲一些地区人口统计数据吻合,适用于19世纪后迁往加拿大的欧洲移民后代,可用于短期人口增长预测,不符合19世纪后多数地区人口增长规律,不能预测较长期的人口增长过程,19世纪后人口数据,阻滞增长模型(Logistic模型),人口增长到一定数量后,增长率下降的原因:,资源、环境等因素对人口增长的阻滞作用,且阻滞作用随人口数量增加而变大,假设,r固有增长率(x很小时),xm人口容量(资源、环境能容纳的最大数量),x(t)S形曲线,x增加先快后慢,阻滞增长模型(Logistic模型),参数估计,用指数增长模型或阻滞增长模型作人口预报,必须先估计模型参数r或r,xm,利用统计数据用最小二乘法作拟合,例:美国人口数据(单位百万),专家估计,阻滞增长模型(Logistic模型),继续,最小二乘法,设经实际测量已得到n组数据(xi,yi),i=1,n。将数据画在平面直角坐标系中,见图。如果建模者判断这n个点很象是分布在某条直线附近,令该直线方程为y=ax+b,进而利用数据来求参数a和b。由于该直线只是数据近似满足的关系式,故yi-(axi+b)=0一般不成立,但我们希望,最小,此式对a和b的偏导数均为0,解相应方程组,求得:,用MATLAB作线性最小二乘拟合,1.作多项式f(x)=a1xm+amx+am+1拟合,可利用已有程序:,a=polyfit(x,y,m),1.lsqcurvefit已知数据点:xdata=(xdata1,xdata2,xdatan),ydata=(ydata1,ydata2,ydatan),用MATLAB作非线性最小二乘拟合,Matlab的提供了两个求非线性最小二乘拟合的函数:lsqcurvefit和lsqnonlin。两个命令都要先建立M-文件fun.m,在其中定义函数f(x),但两者定义f(x)的方式是不同的,可参考例题.,lsqcurvefit用以求含参量x(向量)的向量值函数F(x,xdata)=(F(x,xdata1),F(x,xdatan)T中的参变量x(向量),使得,输入格式为:(1)x=lsqcurvefit(fun,x0,xdata,ydata);(2)x=lsqcurvefit(fun,x0,xdata,ydata,options);(3)x=lsqcurvefit(fun,x0,xdata,ydata,options,grad);(4)x,options=lsqcurvefit(fun,x0,xdata,ydata,);(5)x,options,funval=lsqcurvefit(fun,x0,xdata,ydata,);(6)x,options,funval,Jacob=lsqcurvefit(fun,x0,xdata,ydata,);,说明:x=lsqcurvefit(fun,x0,xdata,ydata,options);,lsqnonlin用以求含参量x(向量)的向量值函数f(x)=(f1(x),f2(x),fn(x)T中的参量x,使得最小。其中fi(x)=f(x,xdatai,ydatai)=F(x,xdatai)-ydatai,2.lsqnonlin,已知数据点:xdata=(xdata1,xdata2,xdatan)ydata=(ydata1,ydata2,ydatan),输入格式为:1)x=lsqnonlin(fun,x0);2)x=lsqnonlin(fun,x0,options);3)x=lsqnonlin(fun,x0,options,grad);4)x,options=lsqnonlin(fun,x0,);5)x,options,funval=lsqnonlin(fun,x0,);,说明:x=lsqnonlin(fun,x0,options);,例用下面一组数据拟合中的参数a,b,k,该问题即解最优化问题:,1)编写M-文件curvefun1.mfunctionf=curvefun1(x,tdata)f=x(1)+x(2)*exp(-0.02*x(3)*tdata)%其中x(1)=a;x(2)=b;x(3)=k;,2)输入命令tdata=100:100:1000cdata=1e-03*4.54,4.99,5.35,5.65,5.90,6.10,6.26,6.39,6.50,6.59;x0=0.2,0.05,0.05;x=lsqcurvefit(curvefun1,x0,tdata,cdata)f=curvefun1(x,tdata),F(x,tdata)=,x=(a,b,k),解法1.用命令lsqcurvefit,3)运算结果为:f=0.00430.00510.00560.00590.00610.00620.00620.00630.00630.0063x=0.0063-0.00340.2542,4)结论:a=0.0063,b=-0.0034,k=0.2542,返回,模型检验,用模型计算2000年美国人口,与实际数据比较,实际为281.4(百万),模型应用预报美国2010年的人口,加入2000年人口数据后重新估计模型参数,Logistic模型在经济领域中的应用(如耐用消费品的售量),阻滞增长模型(Logistic模型),大量实验资料表明用Logistic模型来描述种群的增长,效果还是相当不错的。例如,高斯把5只草履虫放进一个盛有0.5cm3营养液的小试管,他发现,开始时草履虫以每天230.9%的速率增长,此后增长速度不断减慢,到第五天达到最大量375个,实验数据与r=2.309,a=0.006157,N(0)=5的Logistic曲线:几乎完全吻合,见图3.6。,图3-6,Malthus模型和Logistic模型的总结,Malthus模型和Logistic模型均为对微分方程(3.7)所作的模拟近似方程。前一模型假设了种群增长率r为一常数,(r被称为该种群的内禀增长率)。后一模型则假设环境只能供养一定数量的种群,从而引入了一个竞争项。,用模拟近似法建立微分方程来研究实际问题时必须对求得的解进行检验,看其是否与实际情况相符或基本相符。相符性越好则模拟得越好,否则就得找出不相符的主要原因,对模型进行修改。,Malthus模型与Logistic模型虽然都是为了研究种群数量的增长情况而建立的,但它们也可用来研究其他实际问题,只要这些实际问题的数学模型有相同的微分方程即可,下面我们来看两个较为有趣的实例。,年龄分布对于人口预测的重要性,只考虑自然出生与死亡,不计迁移,人口发展方程,人口发展方程,一阶偏微分方程,例2:传染病模型,问题,描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮到来的时刻,预防传染病蔓延的手段,按照传播过程的一般规律,用机理分析方法建立模型,已感染人数(病人)i(t),每个病人每天有效接触(足以使人致病)人数为,模型1,假设,若有效接触的是病人,则不能使病人数增加,建模,?,模型2,区分已感染者(病人)和未感染者(健康人),假设,1)总人数N不变,病人和健康人的比例分别为,2)每个病人每天有效接触人数为,且使接触的健康人致病,建模,日接触率,SI模型,模型2,tm传染病高潮到来时刻,(日接触率)tm,病人可以治愈!,?,t=tm,di/dt最大,模型3,传染病无免疫性病人治愈成为健康人,健康人可再次被感染,增加假设,SIS模型,3)病人每天治愈的比例为,日治愈率,建模,日接触率,1/感染期,一个感染期内每个病人的有效接触人数,称为接触数。,接触数=1阈值,如果感染期内有效接触感染的健康者人数不超过病人数,患者就会全部治愈。,模型4,传染病有免疫性病人治愈后即移出感染系统,称移出者,SIR模型,假设,1)总人数N不变,病人、健康人和移出者的比例分别为,2)病人的日接触率,日治愈率,接触数=/,建模,需建立的两个方程,模型4,SIR模型,模型4,SIR模型,相轨线的定义域,在D内作相轨线的图形,进行分析,SIR模型,相轨线及其分析,s(t)单调减相轨线的方向,P1:s01/i(t)先升后降至0,P2:s00,存在一个0,只要|x(0)-x0|0且x2(t)0,相应的相轨线应保持在第一象限中。,求(3.31)的相轨线,将两方程相除消去时间t,得:,令,用微积分知识容易证明:,有:,与的图形见图3-20,易知仅当时(3.32)才有解,当时,轨线退化为平衡点。,当时,轨线为一封闭曲线(图3-21),即周期解。,证明具有周期解。,只需证明:存在两点及,时,方程无解。,由的性质,而,使得:,。同样根据的性质知,当x1时,。此时:,由的性质,使成立。,当x1=或时,,仅当时才能成立。,而当x1时,由于,,故无解。,得证。,确定闭曲线的走向,在每一子区域,与不变号,据此确定轨线的走向(图3-22),将Volterra方程中的第二个改写成:,将其在一个周期长度为T的区间上积分,得,等式左端为零,故可得:,同理:,解释DAncona发现的现象,引入捕捞能力系数,(01),表示单位时间内捕捞起来的鱼占总量的百分比。故Volterra方程应为:,平衡点P的位置移动到了:,由于捕捞能力系数的引入,食用鱼的平均量有了增加,而食肉鱼的平均量却有所下降,越大,平衡点的移动也越大。,食用鱼的数量反而因捕捞它而增加,真的是这样?!,P-P模型导出的结果虽非绝对直理,但在一定程度上是附合客观实际的,有着广泛的应用前景。例如,当农作物发生病虫害时,不要随随便便地使用杀虫剂,因为杀虫剂在杀死害虫的同时也可能杀死这些害虫的天敌,(害虫与其天敌构成一个双种群捕食系统),这样一来,使用杀虫剂的结果会适得其反,害虫更加猖獗了。,(3)捕鱼对食用鱼有利而对食肉鱼不利,多捕鱼(当然要在一定限度内,如r1)能使食用鱼的平均数量增加而使食肉鱼的平均数量减少。,根据P-P模型,我们可以导出以下结论:,(1)食用鱼的平均量取决于参数r1与1,(2)食用鱼繁殖率r1的减小将导致食肉鱼平均量的减小,食肉鱼捕食能力1的增大也会使自己的平均量减小;反之,食肉鱼死亡率r2的降低或食饵对食肉鱼供养效率2的提高都将导致食用鱼平均量的减少。,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!