电位与电导分析法(周老师).ppt

上传人:zhu****ei 文档编号:3453789 上传时间:2019-12-15 格式:PPT 页数:54 大小:1.79MB
返回 下载 相关 举报
电位与电导分析法(周老师).ppt_第1页
第1页 / 共54页
电位与电导分析法(周老师).ppt_第2页
第2页 / 共54页
电位与电导分析法(周老师).ppt_第3页
第3页 / 共54页
点击查看更多>>
资源描述
02:17:26,第8章电位与电导分析法,第一节电位分析原理与离子选择电极,一、电位分析原理principleofpotentiometryanalysis二、离子选择性电极的种类、原理和结构type,principleandstructureofionselectiveelectrode三、离子选择电极的特性specificpropertyofionselectiveelectrode,potentiometryandconductometry,principleofpotentio-metryanalysisandionselectiveelectrode,02:17:26,一、电位分析原理principleofpotentiometryanalysis,电位分析是通过在零电流条件下测定两电极间的电位差(电池电动势)所进行的分析测定。E=E+-E-+E液接电位装置:参比电极、指示电极、电位差计;当测定时,参比电极的电极电位保持不变,电池电动势随指示电极的电极电位而变,而指示电极的电极电位随溶液中待测离子活度而变。,02:17:26,电位分析的理论基础,理论基础:能斯特方程(电极电位与溶液中待测离子间的定量关系)。对于氧化还原体系:Ox+ne-=Red,对于金属电极(还原态为金属,活度定为1):,02:17:26,二、离子选择性电极的种类、原理与结构type,principleandstructureofionselectiveelectrode,02:17:26,离子选择性电极的原理与结构,离子选择性电极又称膜电极。特点:仅对溶液中特定离子有选择性响应。膜电极的关键:是一个称为选择膜的敏感元件。敏感元件:单晶、混晶、液膜、功能膜及生物膜等构成。膜电位:膜内外被测离子活度的不同而产生电位差。将膜电极和参比电极一起插到被测溶液中,则电池结构为:,外参比电极被测溶液(ai未知)内充溶液(ai一定)内参比电极,内外参比电极的电位值固定,且内充溶液中离子的活度也一定,则电池电动势为:,(敏感膜),02:17:26,1.晶体膜电极(氟电极),结构:如由图敏感膜:(氟化镧单晶)掺有EuF2的LaF3单晶切片;内参比电极:Ag-AgCl电极(管内)。,内参比溶液:0.1mol/L的NaCl和0.10.01mol/L的NaF混合溶液(F-用来控制膜内表面的电位,Cl-用以固定内参比电极的电位)。,02:17:26,原理:,LaF3的晶格中有空穴,在晶格上的F-可以移入晶格邻近的空穴而导电。对于一定的晶体膜,离子的大小、形状和电荷决定其是否能够进入晶体膜内,故膜电极一般都具有较高的离子选择性。当氟电极插入到F-溶液中时,F-在晶体膜表面进行交换。25时:,E膜=K-0.059lgaF-=K+0.059pF,具有较高的选择性,需要在pH57之间使用,pH高时,溶液中的OH-与氟化镧晶体膜中的F-交换,pH较低时,溶液中的F-生成HF或HF2-。,02:17:26,2.玻璃膜(非晶体膜)电极,非晶体膜电极,玻璃膜的组成不同可制成对不同阳离子响应的玻璃电极。H+响应的玻璃膜电极:敏感膜是在SiO2基质中加入Na2O、Li2O和CaO烧结而成的特殊玻璃膜。厚度约为0.05mm。,水浸泡膜时,表面的Na+与水中的H+交换,表面形成水合硅胶层。玻璃电极使用前,必须在水溶液中浸泡。,02:17:26,玻璃膜电位的形成,玻璃电极使用前,必须在水溶液中浸泡,生成三层结构,即中间的干玻璃层和两边的水化硅胶层:,水化硅胶层厚度:0.0110m。在水化层,玻璃上的Na+与溶液中H+发生离子交换而产生相界电位。水化层表面可视作阳离子交换剂。溶液中H+经水化层扩散至干玻璃层,干玻璃层的阳离子向外扩散以补偿溶出的离子,离子的相对移动产生扩散电位。两者之和构成膜电位。,02:17:26,玻璃膜电位,玻璃电极放入待测溶液,25平衡后:H+溶液=H+硅胶E内=k1+0.059lg(a2/a2)E外=k2+0.059lg(a1/a1)a1、a2分别表示外部试液和电极内参比溶液的H+活度;a1、a2分别表示玻璃膜外、内水合硅胶层表面的H+活度;k1、k2则是由玻璃膜外、内表面性质决定的常数。玻璃膜内、外表面的性质基本相同,则k1=k2,a1=a2E膜=E外-E内=0.059lg(a1/a2)由于内参比溶液中的H+活度(a2)是固定的,则:E膜=K+0.059lga1=K-0.059pH试液,02:17:26,讨论:,(1)玻璃膜电位与试样溶液中的pH成线性关系。式中K是由玻璃膜电极本身性质决定的常数;(2)电极电位应是内参比电极电位和玻璃膜电位之和;(3)不对称电位(25):E膜=E外-E内=0.059lg(a1/a2)如果:a1=a2,则理论上E膜=0,但实际上E膜0产生的原因:玻璃膜内、外表面含钠量、表面张力以及机械和化学损伤的细微差异所引起的。长时间浸泡后(24hr)恒定(130mV);,02:17:26,讨论:,(4)高选择性:膜电位的产生不是电子的得失。其它离子不能进入晶格产生交换。当溶液中Na+浓度比H+浓度高1015倍时,两者才产生相同的电位;(5)酸差:测定溶液酸度太大(pH12产生误差,主要是Na+参与相界面上的交换所致;(7)改变玻璃膜的组成,可制成对其它阳离子响应的玻璃膜电极;(8)优点:是不受溶液中氧化剂、还原剂、颜色及沉淀的影响,不易中毒;(9)缺点:是电极内阻很高,电阻随温度变化。,02:17:26,3.流动载体膜电极(液膜电极),钙电极:内参比溶液为含Ca2+水溶液。内外管之间装的是0.1mol/L二癸基磷酸钙(液体离子交换剂)的苯基磷酸二辛酯溶液。其极易扩散进入微孔膜,但不溶于水,故不能进入试液溶液。,二癸基磷酸根可以在液膜-试液两相界面间传递钙离子,直至达到平衡。由于Ca2+在水相(试液和内参比溶液)中的活度与有机相中的活度差异,在两相之间产生相界电位。液膜两面发生的离子交换反应:(RO)2PO2-Ca2+(有机相)=2(RO)2PO2-(有机相)+Ca2+(水相)钙电极适宜的pH范围是511,可测出10-5mol/L的Ca2+。,02:17:26,流动载体膜电极(液膜电极)的讨论,(1)流动载体膜电极(液膜电极)的机理与玻璃膜电极相似;(2)离子载体(有机离子交换剂)被限制在有机相内,但可在相内自由移动,与试样中待测离子发生交换产生膜电位;(3)具有R-S-CH2COO-结构的液体离子交换剂,由于含有硫和羧基,可与重金属离子生成五元内环配合物,对Cu2+、Pd2+等具有良好的选择性;,02:17:26,流动载体膜电极(液膜电极)的讨论,(4)采用带有正电荷的有机液体离子交换剂,如邻菲罗啉与二价铁所生成的带正电荷的配合物,可与阴离子ClO4-,NO3-等生成缔合物,可制备对阴离子有选择性的电极;(5)中性载体(有机大分子)液膜电极,中空结构,仅与适当离子配合,高选择性,如颉氨霉素(36个环的环状缩酚酞)对钾离子有很高选择性,KK,Na=3.110-3;(6)冠醚化合物也可用作为中性载体。,02:17:26,液膜电极应用一览表,02:17:26,4.敏化电极,敏化电极是指气敏电极、酶电极、细菌电极及生物电极等。,试样中待测组分气体扩散通过透气膜,进入离子选择电极的敏感膜与透气膜之间的极薄液层内,使液层内离子选择电极敏感的离子活度变化,则离子选择电极膜电位改变,故电池电动势也发生变化。气敏电极也被称为:探头、探测器、传感器。,(1)气敏电极,基于界面化学反应的敏化电极;结构特点:在原电极上覆盖一层膜或物质,使得电极的选择性提高。对电极:指示电极与参比电极组装在一起;,02:17:26,气敏电极一览表,02:17:26,(2)酶电极,基于界面酶催化化学反应的敏化电极;酶特性:酶是具有特殊生物活性的催化剂,对反应的选择性强,催化效率高,可使反应在常温、常压下进行;,可被现有离子选择性电极检测的常见的酶催化产物:CO2,NH3,NH4+,CN-,F-,S2-,I-,NO2-,02:17:26,(3)组织电极,(tissueelectrodes),特性:以动植物组织为敏感膜;优点:a.来源丰富,许多组织中含有大量的酶;b.性质稳定,组织细胞中的酶处于天然状态,可发挥较佳功效;c.专属性强;d.寿命较长;e.制作简便、经济,生物组织具有一定的机械性能。制作关键:生物组织膜的固定,通常采用的方法有物理吸附、共价附着、交联、包埋等。,02:17:26,5.离子敏感场效应晶体管,(ionsensitivefieldeffectivetransistor,ISFET),微电子化学敏感器件,既具有离子选择性电极对离子敏感的特性,又保留场效应晶体管的性能。在源极和漏极之间施加电压(Vd),电子便从源极流向漏极(产生漏电流Id),Id的大小受栅极和与源极之间电压(Vg)控制,并为Vg与Vd的函数。,02:17:26,离子敏感场效应晶体管原理,将MOSFET的金属栅极用离子选择性电极的敏感膜代替,即成为对相应离子有响应的ISFET。当它与试液接触并与参比电极组成测量体系时,由于在膜与试液的界面处产生膜电位而叠加在栅压上,将引起ISFET漏电流(Id)相应改变,Id与响应离子活度之间具有类似于能斯特公式的关系。应用时,可保持Vd与Vg恒定,测量Id与待测离子活度之间的关系(Id以A为单位)。也可保持Vd与Id恒定,测量Vg随待测离子活度之间的关系(也具有类似于能斯特公式的关系)。,02:17:26,ISFET的特点:,全固态器件、体积小、响应快、易于微型化;本身具有高阻抗转换和放大功能,集敏感元件与电子元件于一体,简化了测试仪器的电路。应用较广。郑建斌等,离子敏感场效应晶体管及其应用,分析化学,1995,23(7),842,02:17:26,三、离子选择电极的特性specificpropertyofionselectiveelectrode1膜电位及其选择性,共存的其它离子对膜电位产生有贡献吗?若测定离子为i,电荷为zi;干扰离子为j,电荷为zj。考虑到共存离子产生的电位,则膜电位的一般式可写成为:,02:17:26,讨论,a对阳离子响应的电极,K后取正号;对负离子响应的电极,K后取负号。bKiJ称之为电极的选择性系数,其意义为:在相同的测定条件下,待测离子和干扰离子产生相同电位时待测离子的活度i与干扰离子活度j的比值:Kij=i/j,02:17:26,讨论,c通常KijVs,可认为溶液体积基本不变。浓度增量为:c=csVs/V0,02:17:26,3.影响电位测定准确性的因素,测量温度温度对测量的影响主要表现在对电极的标准电极电位、直线的斜率和离子活度的影响上,有的仪器可同时对前两项进行校正,但多数仅对斜率进行校正。温度的波动可以使离子活度变化而影响电位测定的准确性。在测量过程中应尽量保持温度恒定。线性范围和电位平衡时间一般线性范围在10-110-6mol/L,平衡时间越短越好。测量时可通过搅拌使待测离子快速扩散到电极敏感膜,以缩短平衡时间。测量不同浓度试液时,应由低到高测量。,02:17:26,影响电位测定准确性的因素,溶液特性在这里溶液特性主要是指溶液离子强度、pH及共存组分等。溶液的总离子强度保持恒定。溶液的pH应满足电极的要求。避免对电极敏感膜造成腐蚀。干扰离子的影响表现在两个方面:一是能使电极产生一定响应,二是干扰离子与待测离子发生络合或沉淀反应。电位测量误差当电位读数误差为1mV时,对于一价离子,由此引起结果的相对误差为3.9%,对于二价离子,则相对误差为7.8%。故电位分析多用于测定低价离子。,02:17:26,二、电位滴定分析法potentiometrictitration,1.电位滴定装置与滴定曲线,每滴加一次滴定剂,平衡后测量电动势。关键:确定滴定反应的化学计量点时,所消耗的滴定剂的体积。快速滴定寻找化学计量点所在的大致范围。突跃范围内每次滴加体积控制在0.1mL。记录每次滴定时的滴定剂用量(V)和相应的电动势数值(E),作图得到滴定曲线。通常采用三种方法来确定电位滴定终点。,02:17:26,2.电位滴定终点确定方法,(1)E-V曲线法:图(a)简单,准确性稍差。,(2)E/V-V曲线法:图(b)一阶微商由电位改变量与滴定剂体积增量之比计算之。曲线上存在着极值点,该点对应着E-V曲线中的拐点。,(3)2E/V2-V曲线法:图(c)2E/V2二阶微商。计算:,02:17:26,第三节电导分析法原理,第八章电位与电导分析法,一、电解质溶液的基本性质basicpropertyofelectrolytesolution二、电解质溶液的电导与浓度的关系relationshipbetweenconductanceandconcentration三、影响电导测量的因素factorsinfluencedonconducto-metricmeasurement四、电导测量与装置conductometricmeasureanddevices,principleofconductometry,potentiometryandconductometry,02:17:26,一、电解质溶液的基本性质basicpropertyofelectrolytesolution,导电性质:离子导电;1.电导(G)、电导率()、摩尔电导率(m)电导:衡量电解质溶液导电能力的物理量,电阻的倒数。G=1/R=A/l=K(l/A)单位:西门子S,1S=1-1电导率:=1/=K(l/A)G电阻率的倒数单位:Sm-1两电极板为单位面积,距离为单位长度时溶液的电导。电导池常数:K(l/A)=l/A(A电极面积;l电极间距)由标准KCl溶液的电导率(查表)确定电导率和电导池常数,02:17:26,单位:Sm2mol-1不同浓度、不同类型电解质导电能力的比较。,摩尔电导率(m),定义:距离为单位长度的两电极板间含有单位物质的量的电解质的溶液的电导。,右图中出现极大值的原因:电导率的大小与溶液中离子数目和离子自由运动能力有关。两种因素相互制约。浓度大,相互作用力大。无限稀释摩尔电导:,2.离子的电导与漂移速率,(1)离子的电迁移率离子在外加电场中受溶剂阻力和电场力,平衡时,以恒定的速率运动。离子的漂移速率B。单位电场强度下离子的漂移速率:离子的电迁移率uB=B/E(2)离子独立运动定律,由右表数据可以得出离子独立运动定律:,02:17:26,二、电解质溶液的电导与浓度的关系relationshipbetweenconductanceandconcentration,D:介电常数:介质的黏度T:绝对温度,02:17:26,三、影响电导测量的因素factorsinfluencedonconducto-metricmeasure,1.温度的影响温度升高,粘度降低,电导增大。每升高1度,约增加2%。,2.溶剂的影响25C蒸馏水电导率:0.81.0Scm-1进一步纯化后电导率:0.030.06Scm-1制备高纯水需要采用石英容器,亚沸蒸馏法。,02:17:26,四、电导测量与装置conductometricmeasurementanddevices,1.装置(1)电极铂电极:铂片。面积,距离固定。光亮铂电极:铂黑电极:表面覆盖一层细小铂粒,减小极化。池常数测定:已知标准KCl溶液的电导率,(2)电导池(避免测量过程中温度变化)(3)电导仪,02:17:26,2.电导测量,(1)直流电导与交流电导电极极化引起误差交流电导可以减小极化引起的误差,(2)四电极测量系统,02:17:26,第四节电导分析法的应用,第八章电位与电导分析法,一、电导滴定分析conductometrictitration二、直接电导法的应用applicationofdirectconductometry,potentiometerandconductometry,applicationsofconductometry,02:17:26,一、电导滴定分析conductometrictitration,电导滴定原理:滴定过程溶液电导率的改变,化学计量点出现突跃;,酸碱滴定曲线:电导滴定常用于稀酸、弱酸、混合酸等的测定。,02:17:26,电导滴定,电导滴定测定稀酸、弱酸、混合酸时的滴定曲线形状。,02:17:26,二、直接电导法应用applicationofdirectconductometry,(1)高纯水质的测定水的纯度取决于水中可溶性电解质的含量。通过测定电导率可以鉴定水的纯度。并可以电导率作为水质标准。普通蒸馏水的电导率210-6Scm-1离子交换水的电导率510-7Scm-1纯水的电导率510-8Scm-1(2)强电解质溶液总浓度的测定土壤,海水的盐度(3)大气污染物测定SO3NO2,吸收后测量电导变化;监测酸雨。,
展开阅读全文
相关资源
相关搜索

当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!