(通用版)2019版高考数学二轮复习 第一部分 专题八 空间几何体的三视图、表面积与体积讲义 理(重点生含解析).doc

上传人:tian****1990 文档编号:3388490 上传时间:2019-12-13 格式:DOC 页数:23 大小:854KB
返回 下载 相关 举报
(通用版)2019版高考数学二轮复习 第一部分 专题八 空间几何体的三视图、表面积与体积讲义 理(重点生含解析).doc_第1页
第1页 / 共23页
(通用版)2019版高考数学二轮复习 第一部分 专题八 空间几何体的三视图、表面积与体积讲义 理(重点生含解析).doc_第2页
第2页 / 共23页
(通用版)2019版高考数学二轮复习 第一部分 专题八 空间几何体的三视图、表面积与体积讲义 理(重点生含解析).doc_第3页
第3页 / 共23页
点击查看更多>>
资源描述
专题八 空间几何体的三视图、表面积与体积卷卷卷2018空间几何体的三视图、直观图及最短路径问题T7圆锥的性质及侧面积的计算T16三视图与数学文化T3与外接球有关的空间几何体体积的最值问题T102017空间几何体的三视图与直观图、面积的计算T7空间几何体的三视图及组合体体积的计算T4球的内接圆柱、圆柱的体积的计算T8三棱锥的体积、导数的应用T162016有关球的三视图及表面积的计算T6空间几何体的三视图及组合体表面积的计算T6空间几何体的三视图及表面积的计算T9与直三棱柱有关的内切球体积的最值问题T10纵向把握趋势卷3年4考,涉及空间几何体的三视图识别以及以三视图为载体考查空间几何体的表面积及侧面展开图问题,题型既有选择题,也有填空题,难度适中预计2019年会以三视图为载体考查空间几何体的体积或表面积的计算问题卷3年3考,涉及空间几何体的三视图、空间几何体的表面积和体积的计算,题型为选择题或填空题,难度适中预计2019年仍会以选择题或填空题的形式考查空间几何体的表面积、体积的计算卷3年5考,涉及数学文化、三视图、几何体的外接球、空间几何体的表面积与体积的计算,难度中等偏上,题型均为选择题预计2019年高考仍会以选择题的形式考查,以空间几何体与球的切、接问题相结合为主考查横向把握重点1.此部分内容一般会以两小或一小的命题形式出现,这“两小”或“一小”主要考查三视图、几何体的表面积与体积的计算2.考查一个小题时,本小题一般会出现在第48题的位置上,难度一般;考查两个小题时,其中一个小题难度一般,另一小题难度稍高,一般会出现在第1016题的位置上,本小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.空间几何体的三视图题组全练1(2018全国卷)中国古建筑借助榫卯将木构件连接起来构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()解析:选A由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.2(2019届高三西安模拟)把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD平面CBD,形成的三棱锥CABD的正视图与俯视图如图所示,则侧视图的面积为()A.B.C. D.解析:选D由三棱锥CABD的正视图、俯视图得三棱锥CABD的侧视图为直角边长是的等腰直角三角形,所以三棱锥CABD的侧视图的面积为.3.(2018全国卷)某圆柱的高为2,底面周长为16,其三视图如图所示圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A2B2C3 D2解析:选B先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图所示圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图所示,连接MN,则图中MN即为M到N的最短路径ON164,OM2,MN 2.4(2018石家庄质检)如图,网格纸上的小正方形的边长为1,粗线表示的是某三棱锥的三视图,则该三棱锥的四个面中,最小面的面积是()A2 B2C2 D.解析:选C在正方体中还原该几何体,如图中三棱锥DABC所示,其中正方体的棱长为2,则SABC2,SDBC2,SADB2,SADC2,故该三棱锥的四个面中,最小面的面积是2.系统方法1确定几何体的三视图的方法判断几何体的三视图的基础是熟练掌握几何体的结构特征,其中三视图的画法是确定三视图的重要依据(1)基本要求:长对正,高平齐,宽相等(2)画法规则:正侧一样高,正俯一样长,侧俯一样宽(3)看不到的线画虚线2由三视图确定几何体的方法熟练掌握规则几何体的三视图是由三视图还原几何体的基础,在明确三视图画法规则的基础上,按以下步骤可轻松解决此类问题:(1)定底面:根据俯视图确定(2)定棱及侧面:根据正视图确定几何体的侧棱与侧面的特征,调整实线、虚线对应棱的位置(3)定形状:确定几何体的形状.空间几何体的表面积与体积由题知法(1)(2018合肥质检)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A518 B618C86 D106(2)(2018洛阳统考)一个几何体的三视图如图所示,图中的三个正方形的边长均为2,则该几何体的体积为()A8 B4C8 D4(3)(2018天津高考)已知正方体ABCDA1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥MEFGH的体积为_解析(1)由三视图可知该几何体是由一个半圆柱和两个半球构成的,故该几何体的表面积为24122122321386.(2)由三视图可得该几何体的直观图如图所示,该几何体是一个棱长为2的正方体上、下各挖去一个底面半径为1,高为1的圆锥后剩余的部分,其体积为2321218.(3)连接AD1,CD1,B1A,B1C,AC,因为E,H分别为AD1,CD1的中点,所以EHAC,EHAC,因为F,G分别为B1A,B1C的中点,所以FGAC,FGAC,所以EHFG,EHFG,所以四边形EHGF为平行四边形,又EGHF,EHHG,所以四边形EHGF为正方形,又点M到平面EHGF的距离为,所以四棱锥MEFGH的体积为2.答案(1)C(2)A(3)类题通法1三类几何体表面积的求法求多面体的表面积只需将它们沿着棱“剪开”并展成平面图形,利用求平面图形面积的方法求多面体的表面积求旋转体的表面积可以从旋转体的形成过程及其结构特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系求不规则几何体的表面积通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积2求体积的3种常用方法直接法对于规则的几何体,利用相关公式直接计算割补法首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,把不熟悉的几何体补成熟悉的几何体,便于计算等体积法选择合适的底面来求几何体的体积,常用于求三棱锥的体积,即三棱锥的任意一个面可作为三棱锥的底面进行等体积变换应用通关1(2018长春质检)九章算术卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何?刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1),那么该刍甍的体积为()A4 B5C6 D12解析:选B如图,由三视图可还原得几何体ABCDEF,过E,F分别作垂直于底面的截面EGH和FMN,将原几何体拆分成两个底面积为3,高为1的四棱锥和一个底面积为,高为2的三棱柱,所以VABCDEF2V四棱锥EADHGV三棱柱EHGFNM23125.2某圆锥的侧面展开图是面积为3且圆心角为的扇形,此圆锥的体积为()A B.C2 D2解析:选B设圆锥的母线为R,底面圆的半径为r,扇形的圆心角为,则SR2R23,解得R3,底面圆的半径r满足,解得r1,所以这个圆锥的高h2,故圆锥的体积Vr2h,故选B.3(2018福州模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为()A14 B104C.4 D.4解析:选D法一:由三视图可知,该几何体为一个直三棱柱切去一个小三棱锥后剩余的几何体,如图所示所以该多面体的表面积S2(2212)2222()24.法二:由三视图可知,该几何体为一个直三棱柱切去一个小三棱锥后剩余的几何体,如图所示所以该多面体的表面积SS三棱柱表S三棱锥侧S三棱锥底(222)22223()24. 重难增分(一)多面体与球的切接问题考法全析一、曾经这样考1三棱锥的外接球(2017全国卷)已知三棱锥S ABC的所有顶点都在球O的球面上,SC是球O的直径若平面SCA平面SCB,SAAC,SBBC,三棱锥S ABC的体积为9,则球O的表面积为_解析:如图,连接AO,OB,SC为球O的直径,点O为SC的中点,SAAC,SBBC,AOSC,BOSC,平面SCA平面SCB,平面SCA平面SCBSC,AO平面SCB,设球O的半径为R,则OAOBR,SC2R.VS ABCVASBCSSBCAOAO,即9R,解得 R3,球O的表面积为S4R243236.答案:36启思维本题考查了三棱锥的外接球问题一般外接球需要求球心和半径,其步骤为:(1)应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的各顶点的距离相等,然后用同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心;(2)根据半径、顶点到底面中心的距离、球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径(例三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球)二、还可能这样考2圆锥的外接球已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()A.B.C16 D32解析:选B设该圆锥的外接球的半径为R,依题意得,R2(3R)2()2,解得R2,所以所求球的体积VR323.启思维本题考查了圆锥的外接球问题,解决本题的关键是根据圆锥及球的结构特点确定球心一定在圆锥的高上,然后建立相关关系式求出球半径3四棱柱的外接球已知正四棱柱的顶点在同一个球面上,且球的表面积为12,当正四棱柱的体积最大时,正四棱柱的高为_解析:设正四棱柱的底面边长为a,高为h,球的半径为r,由题意知4r212,所以r23,又2a2h2(2r)212,所以a26,所以正四棱柱的体积Va2hh,则V6h2,由V0,得0h2,由V0,得h2,所以当h2时,正四棱柱的体积最大.答案:2启思维本题考查了球与正四棱柱的综合问题求解直棱柱的外接球问题时,结合球与直棱柱的有关性质,可知棱柱上、下底面外接圆的圆心连线的中心即为外接球的球心4四棱锥的内切球问题已知四棱锥PABCD的底面ABCD是边长为6的正方形,且PAPBPCPD,若一个半径为1的球与此四棱锥的所有面都相切,则该四棱锥的高是()A6 B5C. D.解析:选D由题意,四棱锥PABCD是正四棱锥,球的球心O在四棱锥的高PH上,过正四棱锥的高作组合体的轴截面如图所示其中PE,PF是斜高,A为球面与侧面的切点,设PHh,由几何体可知RtPAORtPHF,则,解得h.启思维球与多面体的“切”的问题,关键突破口是作出过它们的切点的轴截面,将空间问题转化为平面问题解决在计算过程中要抓住球的半径这个主要元素,再利用平面几何、三角函数知识求解增分集训1(2015全国卷)已知A,B是球O的球面上两点,AOB90,C为该球面上的动点若三棱锥O ABC体积的最大值为36,则球O的表面积为()A36 B64C144 D256解析:选C如图,设球的半径为R,AOB90,SAOBR2.VOABCVC AOB,而AOB面积为定值,当点C到平面AOB的距离最大时,VOABC最大,当C为与球的大圆面AOB垂直的直径的端点时,体积VOABC最大,为R2R36,R6,球O的表面积为4R2462144.2在九章算术中,将四个面都是直角三角形的三棱锥称为鳖臑若三棱锥PABC为鳖臑,侧棱PA底面ABC,ACBC,且PA2,AC3,BC4,则该鳖臑的内切球的半径为_解析:设内切球的半径为r,由鳖臑的性质可知,PCCB,PC,AB5,BP,所以SABC6,SPAB5,SPBC2,SPCA3,VPABCSABCPA4,VPABC(SABCSPABSPBCSPCA)r,故该鳖臑的内切球半径r.答案:3(2018贵阳模拟)如图,正方形网格的边长为1,粗线表示的是某几何体的三视图,该几何体的顶点都在球O的球面上,则球O的表面积为_解析:根据三视图可知该几何体为一个三棱锥,记为SABC,将该三棱锥放入长方体中如图所示,则该三棱锥的外接球直径为长方体的体对角线,设球O的半径为R,所以(2R)222223217,R2,所以球O的表面积为4R217.答案:174(2018益阳、湘潭调研)已知三棱锥SABC的顶点都在球O的球面上,ABC是边长为3的正三角形,SC为球O的直径,且SC4,则此三棱锥的体积为_解析:根据题意作出图形设球心为O,过A,B,C三点的小圆的圆心为O1,则OO1平面ABC,延长CO1交球于点D,连接SD,则SD平面ABC.SDOO1,又O为SC的中点,SD2OO1.CO1,OO11,高SD2OO12,ABC是边长为3的正三角形,SABC,V三棱锥SABC2.答案:重难增分(二)立体几何中的最值问题考法全析一、曾经这样考1三棱锥的体积最值问题(2017全国卷)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,DBC,ECA,FAB分别是以BC,CA,AB为底边的等腰三角形沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC,ECA,FAB,使得D,E,F重合,得到三棱锥当ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_解析:由题意知折叠以后三棱锥的直观图如图所示连接CO并延长交AB于H,连接DO,DH.则DO平面ABC.令OHx,则OC2x,DH5x,得OD ,AB2x.则VDABCx2.令f (x)25x410x5,x,则f (x)100x350x4,由f (x)0,得0x2.由f (x)0,得2x.则当x(0,2)时,f (x)单调递增,当x时,f (x)单调递减,所以当x2时,体积取最大值,为4.答案:4启思维本题考查了立体几何中的折叠问题、体积的求法及导数的应用在求解立体几何中的最值问题时,注意先要引入自变量x,再根据几何体的点、线、面的位置关系,表示几何体中的相关量,进而建立起目标函数,最后,利用函数的性质来求解最值二、还可能这样考2.空间几何体中线段最值问题如图,正方体ABCDA1B1C1D1的棱长为4,点P,Q分别在底面ABCD、棱AA1上运动,且PQ4,点M为线段PQ的中点,则线段C1M的长度的最小值为()A2 B42C6 D4解析:选B连接AP,AC1,AM.由正方体的结构特征可得,QA平面ABCD,所以QAAP.因为PQ4,点M为线段PQ的中点,所以AMPQ2,故点M在以A为球心,半径R2的球面上,易知AC14,所以C1M的最小值为AC1R42,故选B.启思维该题中限制点P,Q分别在底面ABCD、棱AA1上运动,所以点M的轨迹是以点A为球心,半径为2的球面的一部分该题中的最值问题与圆上的点到定点距离的最值问题类似,对于后者,将圆上的点到定点距离的最值用圆心到定点的距离与半径的和与差表示,因此,球面上的点到定点的距离的最值,也可用球心到定点的距离与半径的和与差表示3与立体几何的表面展开图有关的最值问题已知圆锥的侧面展开图是半径为3的扇形,则该圆锥体积的最大值为_解析:由题意得圆锥的母线长为3,设圆锥的底面半径为r,高为h,则h,所以圆锥的体积Vr2hr2.设f (r)9r4r6(r0),则f (r)36r36r5,令f (r)36r36r56r3(6r2)0,得r,所以当0r时,f (r)0,f (r)单调递增;当r时,f (r)0,f (r)单调递减,所以f (r)maxf ()108,所以Vmax2.答案:2启思维本题考查了圆锥的侧面展开图的性质,即侧面展开图中扇形的半径为圆锥的母线,扇形的弧长为底面圆的周长本题还考查了圆锥体积的求法及导数在求最值中的应用增分集训1(2018全国卷)设A,B,C,D是同一个半径为4的球的球面上四点,ABC为等边三角形且其面积为9,则三棱锥DABC体积的最大值为()A12 B18C24 D54解析:选B由等边ABC的面积为9,可得AB29,所以AB6,所以等边ABC的外接圆的半径为rAB2.设球的半径为R,球心到等边ABC的外接圆圆心的距离为d,则d2.所以三棱锥DABC高的最大值为246,所以三棱锥DABC体积的最大值为9618.2已知点A,B,C,D在同一个球的球面上,ABBC1,ABC120.若四面体ABCD体积的最大值为,则这个球的表面积为()A. B4C. D.解析:选D因为ABBC1,ABC120,所以由正弦定理知ABC外接圆的半径r1,SABCABBCsin 120.设外接圆的圆心为Q,则当DQ与平面ABC垂直时,四面体ABCD的体积最大,所以SABCDQ,所以DQ3.设球心为O,半径为R,则在RtAQO中,OA2AQ2OQ2,即R212(3R)2,解得R,所以球的表面积S4R2,故选D.3正四面体ABCD的外接球半径为2,过棱AB作该球的截面,则截面面积的最小值为_解析:由题意知面积最小的截面是以AB为直径的圆,如图,在正四面体ABCD中,设E为BCD的中心,连接AE,BE,则球心O在AE上,延长AE交球面于F,则AF是球的直径,ABF90,又AEBE,在ABF中,由射影定理得AB2AEAF4AE,又AEAB,所以AB,于是截面面积的最小值为2.答案:专题跟踪检测(对应配套卷P183)一、全练保分考法保大分1已知长方体的底面是边长为1的正方形,高为,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该长方体的正视图的面积等于()A1B.C2 D2解析:选C依题意得,题中的长方体的正视图和侧视图的高都等于,正视图的长是,因此相应的正视图的面积等于2.2.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为()解析:选B由几何体的正视图和俯视图可知该几何体为图所示,故其侧视图为图.3若将半径为R的半圆卷成一个圆锥,则该圆锥的体积为()A.R3 B.R3C.R3 D.R3解析:选A设该圆锥的底面半径为r,则2rR,r,h.因此Vr2hR3.4如图,正方体ABCDA1B1C1D1的棱长为1,E为棱DD1上的点,F为AB的中点,则三棱锥B1BFE的体积为()A. B.C. D.解析:选C由等体积法可知VB1BFEVEBFB1SBB1FAD11.5(2016全国卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A25 B24C28 D32解析:选C由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面半径为r,周长为c,圆锥母线长为l,圆柱高为h.由图得r2,c2r4,h4,由勾股定理得:l224,S表r2chcl416828.6(2019届高三河北“五个一名校联盟”模拟)某几何体的三视图如图所示,则这个几何体的体积是()A13 B14C15 D16解析:选C所求几何体可看作是将长方体截去两个三棱柱得到的,在长方体中还原该几何体如图中ABCDABCD所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V42323215.7(2018开封模拟)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A.B.C. D.解析:选D由三视图知该几何体底面扇形的圆心角为120,即该几何体是某圆锥的三分之一部分,又由侧视图知几何体的高为4,底面圆的半径为2,所以该几何体的体积V224.8(2018沈阳质监)如图,网格纸上小正方形的边长为1,粗线画出的是某简单几何体的三视图,则该几何体的体积为()A. B.C. D.解析:选A由三视图可得该几何体为半圆锥,底面半圆的半径为2,高为2,则其体积V222.9(2018武汉调研)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. B.C. D3解析:选D由三视图可知,该几何体为三棱锥,记为ABCD,将其放入棱长为3的正方体中,如图,则VABCD2333.10.如图,已知EAB所在的平面与矩形ABCD所在的平面互相垂直,EAEB3,AD2,AEB60,则多面体EABCD的外接球的表面积为()A. B8C16 D64解析:选C由题知EAB为等边三角形,设球心为O,O在平面ABCD的射影为矩形ABCD的中心,O在平面ABE上的射影为EAB的重心G,又由平面EAB平面ABCD,则OGA为直角三角形,OG1,AG,所以R24,所以多面体EABCD的外接球的表面积为4R216.11(2018昆明调研)古人采取“用臼舂米”的方法脱去稻谷的外壳,获得可供食用的大米,用于舂米的“臼”多用石头或木头制成一个“臼”的三视图如图所示,则凿去部分(看成一个简单的组合体)的体积为()A63 B72C79 D99解析:选A由三视图得凿去部分是圆柱与半球的组合体,其中圆柱的高为5,底面圆的半径为3,半球的半径为3,所以组合体的体积为3253363.12(2019届高三武汉调研)一个几何体的三视图如图,则它的表面积为()A28 B242C204 D202解析:选B根据该几何体的三视图作出其直观图如图所示,可以看出该几何体是一个底面是梯形的四棱柱根据三视图给出的数据,可得该几何体中梯形的上底长为2,下底长为3,高为2,所以该几何体的表面积S(23)222223222242.13某几何体的三视图如图所示,则此几何体的外接球的表面积等于_解析:由三视图可得该几何体的外接球等同于长、宽、高分别为5,3,3的长方体的外接球,故此几何体的外接球的表面积S(523232)43.答案:4314已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的侧视图的面积的最小值是_解析:如图,在正三棱柱ABCA1B1C1中,当CDAB,C1D1A1B1时,侧视图的面积最小,此时D,D1分别是AB,A1B1的中点易得CD,则侧视图面积的最小值为22.答案:215一个几何体的三视图及尺寸如图所示,则该几何体的体积为_解析:根据三视图还原几何体,其是由一个长方体被挖去半个圆锥后形成的,如图所示,因此所求的几何体的体积V2121224.答案:16.我国古代数学家祖暅是著名数学家祖冲之之子,祖暅原理:“幂势既同,则积不容异”意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意一平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等其著名的应用是解决了“牟和方盖”中的体积问题核心过程:如图,正方体ABCDA1B1C1D1的棱长R为2,若图中四分之一圆柱体BB1C1AA1D1和四分之一圆柱体AA1B1DD1C1的公共部分的体积为V,用平行于正方体上下底面的平面EFGH在高度h处去截两个四分之一圆柱体的公共部分,截得的面积为S1,截正方体所得面积为S2,截锥体C1ABCD所得面积为S3,S1R2h2,S2R2,S2S1S3,则V的值为_解析:由祖暅原理易得正方体ABCDA1B1C1D1除去两个四分之一圆柱体的公共部分后所得几何体的体积等于四棱锥C1ABCD的体积,所以V23222.答案:二、强化压轴考法拉开分1在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球,若ABBC,AB6,BC8,AA13,则V的最大值是()A4 B.C6 D.解析:选B要使球的体积V最大,必须使球的半径R最大当球与三棱柱的三个侧面都相切时,球的半径为2,这时球的直径大于三棱柱的高,不符合题意当球与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为R33.2(2018南宁模拟)三棱锥PABC中,ABC为等边三角形,PAPBPC3,PAPB,三棱锥PABC的外接球的体积为()A. B.C27 D27解析:选B在三棱锥PABC中,ABC为等边三角形,PAPBPC3,PABPBCPAC.PAPB,PAPC,PCPB.以PA,PB,PC为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥PABC的外接球正方体的体对角线长为3,其外接球半径R.因此三棱锥PABC的外接球的体积V3.3(2019届高三洛阳第一次联考)已知球O与棱长为4的正四面体的各棱相切,则球O的体积为()A. B.C. D.解析:选A将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2.因为球O与正四面体的各棱都相切,所以球O为正方体的内切球,即球O的直径2R2,则球O的体积VR3.4.(2018唐山模拟)把一个皮球放入如图所示的由8根长均为20 cm的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点(皮球不变形),则皮球的半径为()A10 cm B10 cmC10 cm D30 cm解析:选B依题意,在四棱锥SABCD中,所有棱长均为20 cm,连接AC,BD交于点O,连接SO,则SOAOBOCODO10 cm,易知点O到AB,BC,CD,AD的距离均为10 cm,在等腰三角形OAS中,OAOS10 cm,AS20 cm,所以O到SA的距离d10 cm,同理可证O到SB,SC,SD的距离也为10 cm,所以球心为四棱锥底面ABCD的中心,所以皮球的半径r10 cm.5.某几何体的三视图如图所示,网格纸的小方格是边长为1的正方形,则该几何体中最长棱的棱长是()A. B.C. D3解析:选A由三视图可知该几何体为一个三棱锥DABC,如图,将其置于长方体中,该长方体的底面是边长为1的正方形,高为2.所以AB1,AC,BC,CD,DA2,BD,因此最长棱为BD,棱长是.6(2018长春质检)已知矩形ABCD的顶点都在球心为O,半径为R的球面上,AB6,BC2,且四棱锥OABCD的体积为8,则R等于()A4 B2C. D.解析:选A如图,设矩形ABCD的中心为E,连接OE,EC,由球的性质可得OE平面ABCD,所以VOABCDOES矩形ABCDOE628,所以OE2,在矩形ABCD中,可得EC2,则R4.7在长方体ABCDA1B1C1D1中,AD1,AB2,AA12,点M在平面ACB1内运动,则线段BM的最小值为()A. B.C. D3解析:选C线段BM的最小值即点B到平面ACB1的距离h.在ACB1中,ACB1C,AB12,所以AB1边上的高为,所以SACB12.又三棱锥BACB1的体积VBACB1VABB1C212,所以VBACB1h,所以h.8(2019届高三南昌调研)已知三棱锥PABC的所有顶点都在球O的球面上,ABC满足AB2,ACB90,PA为球O的直径且PA4,则点P到底面ABC的距离为()A. B2C. D2解析:选B取AB的中点O1,连接OO1,如图,在ABC中,AB2,ACB90,所以ABC所在小圆O1是以AB为直径的圆,所以O1A,且OO1AO1,又球O的直径PA4,所以OA2,所以OO1,且OO1底面ABC,所以点P到平面ABC的距离为2OO12.9某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为_解析:依题意得,题中的直三棱柱的底面是等腰直角三角形,设其直角边长为a,则斜边长为a,圆锥的底面半径为a、母线长为a,因此其俯视图中椭圆的长轴长为a、短轴长为a,其离心率e.答案:10(2018全国卷)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30.若SAB的面积为8,则该圆锥的体积为_解析:在RtSAB中,SASB,SSABSA28,解得SA4.设圆锥的底面圆心为O,底面半径为r,高为h,在RtSAO中,SAO30,所以r2,h2,所以圆锥的体积为r2h(2)228.答案:811如图,AB为圆O的直径,点E,F在圆O上,ABEF,矩形ABCD所在平面和圆O所在平面垂直,且AB2,ADEF1.则平面CBF将几何体EFABCD分成的三棱锥与四棱锥的体积的比为_解析:由题意可知,平面CBF将几何体EFABCD分成的两个锥体的体积分别为V四棱锥FABCD,V三棱锥FCBE.过点F作FGAB于点G(图略),因为平面ABCD平面ABEF,平面ABCD平面ABEFAB,FG平面ABEF,所以FG平面ABCD.所以V四棱锥FABCD12FGFG,V三棱锥FBCEV三棱锥CBEFSBEFCBFG11FG,由此可得V三棱锥CBEFV四棱锥FABCD14.答案:1412(2018开封模拟)已知正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为,此时四面体ABCD的外接球的表面积为_解析:如图(1),在正三角形ABC中,ABBCAC2,则BDDC1,AD.在翻折后所得的几何体中,如图(2),ADBD,ADCD,BDCDD,则AD平面BCD,三棱锥ABCD的外接球就是它扩展为三棱柱的外接球,球心到截面BCD的距离dAD.在BCD中,BC,则由余弦定理,得cosBDC,所以BDC120.设球的半径为R,BCD的外接圆半径为r,则由正弦定理,得2r2,解得r1,则球的半径R,故球的表面积S4R2427.答案:7
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!