资源描述
2019-2020年八年级数学上册 第2章 特殊三角形 2.2 等腰三角形的性质名师教案2 浙教版教学目标1、经历利用轴对称变换推导等腰三角形的性质,并加深对轴对称变换的认识. 2、掌握等腰三角形的下列性质:等腰三角形的两个底角相等;等腰三角形三线合一3、会利用等腰三角形的性质进行简单的推理、判断、计算和作图 教学重点与难点教学重点:本节教学的重点是理解并掌握等腰三角形的性质:等边对等角;三线合一.教学难点:等腰三角形三线合一性质的运用,在解题思路上需要作一些转换,例如例2,是本节教学的难点.教学方法:可采用学生在任务驱动下的自主学习与教师辅导相结合课前准备:学生:准备一些等腰三角形,预习本节内容教师:教学活动材料,多媒体课件教学过程一创设情境,自然引入1.温故检测: 叫做等腰三角形;等腰三角形是轴对称图形,它的对称轴是 。两边相等的三角形叫做等腰三角形。特殊情况是正三角形。对称轴是等腰三角形顶角平分线所在的直线。2.悬念、引子、思考将一把三角尺和一个重锤如图放置,就能检查一根横梁是否水平,你知道为什么吗?说明:首先这个三角形必须是等腰三角形,要不然三角形就放不平.对于“为什么”学生可能会回答“不知道”,那就进入下一环节“合作学习,探究等腰三角形的性质”;也有可能会回答“等腰三角形三线合一”,因为不能排除有部分学生“预习过”什么的.那就可以追问“等腰三角形三线为什么会合一”,学生会说,就让他说,但不管会说,还是不会说,都要进入下一环节“合作学习,探究等腰三角形的性质”;这是考虑到大多数学生的利益.二交流互动,探求新知1等腰三角形的性质合作学习:分三组教学活动材料教学活动材料1:如图25,在等腰三角形ABC中,ABAC,AD平分BAC,交BC于D,(1)把这个等腰三角形剪下来,然后沿着顶角平分线对折,仔细观察重合的部分,并写出所发现的结论。(2)你发现了等腰三角形的哪些性质?教学活动材料2:如图25,在等腰三角形ABC中,ABAC,AD平分BAC,交BC于D,(1)根据我们已经获得的等腰三角形是轴对称图形,图2-5中等腰三角形ABC的对称轴是什么?ABD各个顶点的对称点分别是什么?由此可见,将ABD作关于直线AD的轴对称变换,所得的像是什么?(2)根据轴对称变换的性质:轴对称变换不改变图形的形状和大小.找出图中的全等三角形,以及所有相等的线段和相等的角.(3)你有什么发现?能得出等腰三角形的哪些性质?教学活动材料3:如图25,在等腰三角形ABC中,ABAC,AD平分BAC,交BC于D,(1)根据学过的全等三角形判定方法找出图中的全等三角形,根据全等三角形的性质找出所有相等的线段和角(2)你发现了等腰三角形的哪些性质?(发给学生活动材料,四人一组先合作学习,再交流讨论,经历等腰三角形性质的发现过程,教师应给学生一定的时间和机会,来清晰地、充分地讲出自己的发现,并加以引导,用规范的数学语言进行归纳,最后得出等腰三角形的性质.)结论:等腰三角形性质定理1:等腰三角形的两个底角相等。或“在一个三角形中,等边对等角”等腰三角形性质定理2:等腰三角形的顶角平分线、底边上的中线和高线互相重合.简称等腰三角形三线合一.2多媒体演示:教师借助媒体的动态效果,介绍在一个三角形中,等边对等角和三角形一边上中线、高线及角平分线的相对位置,帮助学生在理解的基础上,掌握等腰三角形的性质.3解决节前图中的悬念,如果重锤经过三角尺斜边的中点,那么可以判定梁是水平的.你能说明理由吗?(当重锤线经过三角尺斜边的中点时,重锤线与斜边上的高线叠合(等腰三角形三线合一),即斜边与重锤线垂直,所以斜边与梁是水平的.及时地解决问题,使学生懂得学习的价值.)4应用定理时的推理格式:用几何语言表述为:在ABC中,如图,ABAC BC(在一个三角形中等边对等角)在ABC中,如图(1)ABAC ,12ADBC,BDDC (等腰三角形三线合一)(2)ABAC,BDDC ADBC,12(3)ABAC,ADBC BDDC,125例题学习例1 如图2-6,在ABC中,ABAC, A50,求B,C的度数. 解:在ABC中,ABAC ,BC(在一个三角形中等边对等角)ABC180,A50,BC65.练习1课内练习2(例1和练习1是巩固“等腰三角形的两个底角相等”这条性质而配置的,比较简单,可以让学生自己去探索,并完成解题过程,然后师生突出评述推理过程.)例2 已知线段a,h(如图2-7)用直尺和圆规作等腰三角形ABC,使底边BCa,BC边上的高线为h.教学中可作如下启发:(1)假设图形已经作出,如课本图28,BC长已知,可以先作出BC边,要作等腰三角形ABC,关键是要作出哪一个点?(2)已知BC边上的高线的长度为h,你能作出BC边上的高线吗?等腰三角形底边上的高线与中线有什么关系?由此能确定顶点A的位置吗?(例2是运用尺规作等腰三角形,作法思路需要作一些分析转换,是本节教学的难点,在操作过程中要让学生体验等腰三角形三线合一的性质)练习2填空:(1)在ABC中,ABAC,若A40则C ;若B72,则A .(2)在ABC中,ABAC,BAC40,M是BC的中点,那么AMC ,BAM .(3)如图,在ABC中,ABAC,DAC是ABC的外角。BAC180 B,B( )DAC C(4)如图,在ABC中,ABAC,外角DCA100,则B 度. (以此来巩固等腰三角形的性质,同时培养学生的观察分析的能力)三合作探究,强化能力.探究1:已知在ABC中,ABAC,直线AE交BC于点D,O是AE上一动点但不与A重合,且OBOC,试猜想AE与BC的关系,并说明你的猜想的理由. 猜想:AEBC,BDCDABAC(已知)OBOC(已知)AOAO(公共边)ABOACO(SSS)BAOCAOAEBC,BDCD(等腰三角形底边上中线,底边上高线与顶角平分线互相重合)探究2:等腰三角形两底角的平分线大小关系。已知:如图,在ABC中,ABAC,BD、CE分别是两底角的平分线。猜想:BDCE.解:ABAC(已知), ABCACB (在一个三角形中等边对等角)BD、CE分别是两底角的平分线(已知)DBCABC,DCBACB (角平分线的定义)DBCDCB,在DBC和ECB中DBCDCB,BCCB(公共边),ABCACB , DBCECB(ASA)BDCE(全等三角形对应边相等)(探究1需要学生根据数学语言画出几何图形,然后进行归纳、猜想、推理;探究2需要学生把文字转化为数学语言和几何图形,再进行归纳、猜想、推理,要求更高些;初衷有一个,那就是培养学生归纳、猜想、推理的自主学习的能力,以上两例都有一定的难度,教师可以根据班级的实际情况选用)四归纳小结,强化思想1在本节课的学习中,你有哪些收获?和我们共享.2你还有什么不理解的地方,需要老师或同学帮助.(采用谈话式小结,沟通师生之间的情感,给学生一个梳理知识的空间,培养学生的知识整理能力与语言表达能力)五作业1作业本2预习2.3节内容
展开阅读全文