云南省2019年中考数学总复习 提分专练(四)二次函数小综合练习.doc

上传人:max****ui 文档编号:3344454 上传时间:2019-12-12 格式:DOC 页数:9 大小:588KB
返回 下载 相关 举报
云南省2019年中考数学总复习 提分专练(四)二次函数小综合练习.doc_第1页
第1页 / 共9页
云南省2019年中考数学总复习 提分专练(四)二次函数小综合练习.doc_第2页
第2页 / 共9页
云南省2019年中考数学总复习 提分专练(四)二次函数小综合练习.doc_第3页
第3页 / 共9页
点击查看更多>>
资源描述
提分专练(四)二次函数小综合|类型1|二次函数与方程(不等式)的综合1.已知二次函数y=x2-2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?|类型2|二次函数与直线的综合2.xx北京 在平面直角坐标系xOy中,直线y=4x+4与x轴、y轴分别交于点A,B,抛物线y=ax2+bx-3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.|类型3|二次函数与三角形的综合3.xx黄冈 已知直线l:y=kx+1与抛物线y=x2-4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线的两交点为A,B,O为原点,当k=-2时,求OAB的面积.4.xx齐齐哈尔 如图T4-1,已知抛物线y=-x2+bx+c与x轴交于点A(-1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且SABP=4SCOE,求P点坐标.注:二次函数y=ax2+bx+c(a0)的图象的顶点坐标为-b2a,4ac-b24a.图T4-1|类型4|二次函数与平行四边形的综合5.如图T4-2,已知点A的坐标为(-2,0),直线y=-34x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A,B,C三点.(1)请直接写出B,C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标.图T4-2|类型5|二次函数与相似三角形的综合6.在直角坐标系xOy中,A(0,2),B(-1,0),将ABO经过旋转、平移等变化后得到如图T4-3所示的BCD.(1)求经过A,B,C三点的抛物线的解析式;(2)连接AC,点P是位于线段BC上方的抛物线上一动点,若直线PC将ABC的面积分成13两部分,求此时点P的坐标.图T4-3参考答案1.解:(1)证明:证法一:(-2m)2-4(m2+3)=-120,该函数的图象开口向上.又y=x2-2mx+m2+3=(x-m)2+33,该函数的图象在x轴的上方.不论m为何值,该函数的图象与x轴没有公共点.(2)y=x2-2mx+m2+3=(x-m)2+3,把函数y=(x-m)2+3的图象沿y轴向下平移3个单位长度后,得到函数y=(x-m)2的图象,它的顶点坐标是(m,0),因此这个函数的图象与x轴只有一个公共点.把该函数的图象沿y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.2.解:(1)直线y=4x+4与x轴、y轴分别交于点A,B,A(-1,0),B(0,4).将点B向右平移5个单位长度,得到点C,C(0+5,4),即C(5,4).(2)抛物线y=ax2+bx-3a经过点A,a-b-3a=0.b=-2a.抛物线的对称轴为直线x=-b2a=-2a2a=1,即对称轴为直线x=1.(3)易知抛物线过点(-1,0),(3,0).若a0,如图所示,易知抛物线过点(5,12a),若抛物线与线段BC恰有一个公共点,满足12a4即可,可知a的取值范围是a13.若a4,此时a-43.若抛物线的顶点在线段BC上,此时顶点坐标为(1,4),从而解析式为y=a(x-1)2+4,将A(-1,0)代入,解得a=-1,如图所示:综上,a的取值范围是a13或a0,所以该一元二次方程有两个不相等的实数根,即直线l与抛物线总有两个交点.(2)如图,连接AO,BO,联立两个函数,得x2-4x=-2x+1,解得x1=1-2,x2=1+2.设直线l与y轴交于点C,在一次函数y=-2x+1中,令x=0,得y=1,所以C(0,1),OC=1.所以SABO=SAOC+SBOC=12OC|xA|+12OC|xB|=12OC|xA-xB|=12122=2.4.解:(1)抛物线y=-x2+bx+c与x轴交于点A(-1,0)和点B(3,0),-1-b+c=0,-9+3b+c=0,解得b=2,c=3,抛物线的解析式为y=-x2+2x+3.(2)x=0时,y=3,点C的坐标为(0,3).y=-x2+2x+3=-(x2-2x+1)+4=-(x-1)2+4,点D的坐标为(1,4).(3)设点P(x,y),其中x0,y0,SCOE=1231=32,SABP=124y=2y,SABP=4SCOE,2y=432,y=3.-x2+2x+3=3,解得x=2(x=0舍去).点P的坐标为(2,3).5.解:(1)B(4,0),C(0,3).抛物线的解析式为y=-38x2+34x+3.顶点D的坐标为1,278.(2)把x=1代入y=-34x+3,得y=94,DE=278-94=98.点P为第一象限内抛物线上一点,可设点P的坐标为m,-38m2+34m+3,则点F的坐标为m,-34m+3.若四边形DEFP为平行四边形,则PF=DE,-38m2+34m+3-34m+3=98,解得m1=3,m2=1(不合题意,舍去).当点P的坐标为3,158时,四边形DEFP为平行四边形.6.解:(1)A(0,2),B(-1,0),将ABO经过旋转、平移等变化得到BCD,BD=OA=2,CD=OB=1,BDC=AOB=90.C(1,1).设经过A,B,C三点的抛物线解析式为y=ax2+bx+c,则有a-b+c=0,a+b+c=1,c=2,解得:a=-32,b=12,c=2.抛物线解析式为y=-32x2+12x+2.(2)如图所示,设直线PC与AB交于点E.直线PC将ABC的面积分成13两部分,AEBE=13或AEBE=3,过E作EFOB于点F,则EFOA.BEFBAO,EFAO=BEBA=BFBO.当AEBE=13时,EF2=34=BF1,EF=32,BF=34,E-14,32.设直线PC的解析式为y=mx+n,则可求得其解析式为y=-25x+75,-32x2+12x+2=-25x+75,x1=-25,x2=1(舍去),P1-25,3925.当AEBE=3时,同理可得P2-67,2349.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!