九年级数学 第13讲 动点问题探究-几何图形中的动点问题教案.doc

上传人:max****ui 文档编号:3340568 上传时间:2019-12-12 格式:DOC 页数:11 大小:136KB
返回 下载 相关 举报
九年级数学 第13讲 动点问题探究-几何图形中的动点问题教案.doc_第1页
第1页 / 共11页
九年级数学 第13讲 动点问题探究-几何图形中的动点问题教案.doc_第2页
第2页 / 共11页
九年级数学 第13讲 动点问题探究-几何图形中的动点问题教案.doc_第3页
第3页 / 共11页
点击查看更多>>
资源描述
教学过程动点问题探究几何图形中的动点问题知识点图形的平移、图形的旋转、图形的翻折、动点问题的函数图像教学目标会列出函数或方程等解决图形的动点问题教学重点会解决图形的平移、旋转、翻折等问题教学难点会利用函数及方程解决图形的平移、旋转、翻折等问题教学过程动点所产生的函数及方程问题在初中数学中占有相当的比重,在全国各地的中考数学试卷中占到10%到20%的比重。主要研究在几何图形运动中,伴随着一定的数量关系、图形位置关系的“变”和“不变性”,就运动对象而言,有点动、线动和面动,常常集代数与几何于一体,有较强的综合性,题目灵活多变,动中有静,静中有动,动静结合二、复习预习1. 平移,是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。平移不改变图形的形状和大小。图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。2. 轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴。3. 在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。三、知识讲解考点1 单点运动及双点运动问题关于点运动的问题,一般根据图形变化,探索动点运动的特点和规律,作出符合条件的草图。解这类题的关键是抓住动点运动过程中不变的量,用含未知数的代数式去表示所需的线段,根据题意中隐含的条件借助相似等方式构造方程或函数表达式。考点2 图形运动问题图形的运动包括图形的平移、旋转、翻折等,图形在运动过程中,对应线段、对应角不变,以三角形、四边形的运动是常见的一种题型。这里需注意:平移、旋转、翻折都改变了图形的位置,不改变图形的形状和大小。对于此类题目,关键在于抓住运动图形的特殊位置、临界位置及特殊性质,其基本方法是把握图形运动与变化的全过程,以不变应万变,解答过程中常需借用函数或方程来解答。考点3 线运动问题解决此类题的关键是根据线运动的变化,研究图形的变化由图形变化前后的关系及图形的性质综合解决问题,如本题利用平移性质及三角形面积建立方程解决问题. 四、例题精析考点一 双点运动问题例1 如图14,在ABC中,B = 90,AB = 6cm,BC = 12cm,动点P以1cm/s的速度从A出发沿边AB向点B移动,动点Q以2cm/s的速度同时从点B出发沿BC向点C移动PBQ的面积S(cm2)与点P移动时间t (s)的函数关系式为_,其中t的取值范围为_;判断PBQ能否与ABC相似,若能,求出此时点P移动的时间,若不能,说明理由;设M是AC的中点,连接MP、MQ,试探究点P移动的时间是多少时,MPQ的面积为ABC面积的?例2如图,RtABC中,ACB=90,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0t2),连接PQ(1)若BPQ与ABC相似,求t的值;(2)连接AQ,CP,若AQCP,求t的值;(3)试证明:PQ的中点在ABC的一条中位线上考点二 图形运动问题例3如图,矩形纸片ABCD中,AB=6,BC=8;折叠纸片使点B落在AD上,落点为B;点B从点A开始沿AD移动,折痕所在直线l的位置也随之改变,当直线l经过点A时,点B停止移动,连接BB;设直线l与AB相交于点E,与CD所在直线相交于点F,点B的移动距离为x,点F与点C的距离为y;(1)求证BEF=ABB;(2)求y与x的函数关系式,并直接写出x的取值范围;考点三 线运动问题例4如图,在ABC中,AB=AC,ADAB于点D,BC=10cm,AD=8cm点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t0)(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的PEF的面积存在最大值,当PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由课程小结本节课主要研究了几何图形中的动点问题,中考中,对运动变化问题的考查是常考的内容之一,考查的热点是点运动问题、图形运动问题(旋转、翻折、对称变换),解答动点问题时,点不同位置考虑的不全面是容易导致出错的原因之一。复习运动变化问题时,要注意动中觅静,动静互化,以静制动,注意问题中的不变量、不变关系,在运动变化中探索问题的不变性。考点一 双点运动问题例1 【规范解答】(1)0t6(2)由题意知 AP=t,BQ=2t,若PBQ与ABC相似,则,解得t=3,解得t= 即当点P移动3s或s时,PBQ与ABC相似(3)作MDAB于D,MEBC于EADM=90,又B=90,ADM=B,DMBC,又M是AC的中点,即D是AB的中点, ,同理,即,即点P移动3s时,【总结与反思】(1)要求PBQ的面积,只需用含t的代数式表示三角形的底和高即可得到。(2)若PBQ与ABC相似,分两种情况讨论:,分别用含t的代数式表示各线段的长度后带入即可。(3)用含t的代数式表示MPQ的面积后,按照题意建立起含有t的方程,便可以求出移动的时间了。例2【规范解答】解:(1)当BPQBAC时,=,BP=5t,QC=4t,AB=10cm,BC=8cm,=,t=1;当BPQBCA时,=,=,t=,t=1或时,BPQ与ABC相似;(2)如图所示,过P作PMBC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=84t,NAC+NCA=90,PCM+NCA=90,NAC=PCM且ACQ=PMC=90,ACQCMP,=,=,解得:t=;(3)如图,仍有PMBC于点M,PQ的中点设为D点,再作PEAC于点E,DFAC于点F,ACB=90,DF为梯形PECQ的中位线,DF=,QC=4t,PE=8BM=84t,DF=4,BC=8,过BC的中点R作直线平行于AC,RC=DF=4成立,D在过R的中位线上,PQ的中点在ABC的一条中位线上【总结与反思】(1)分两种情况讨论:当BPQBAC时,=,当BPQBCA时,=,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(2)过P作PMBC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=84t,根据ACQCMP,得出=,代入计算即可;(3)作PEAC于点E,DFAC于点F,先得出DF=,再把QC=4t,PE=8BM=84t代入求出DF,过BC的中点R作直线平行于AC,得出RC=DF,D在过R的中位线上,从而证出PQ的中点在ABC的一条中位线上考点二 图形运动问题例3【规范解答】(1)证明,如图,由四边形ABCD是矩形和折叠的性质可知,BE=BE,BEF=BEF,在等腰BEB中,EF是角平分线,EFBB,BOE=90,ABB+BEF=90,ABB+ABB=90,BEF=ABB;(2)解当点F在CD之间时,如图1,作FMAB交AB于点E,AB=6,BE=EB,AB=x,BM=FC=y,在RTEAB中,EB2=AE2+AB2,(6AE)2=AE2+x2解得AE=,tanABB=,tanBEF=,由(1)知BEF=ABB,=,化简,得y=x2x+3,(0x82)当点F在点C下方时,如图2所示设直线EF与BC交于点K设ABB=BKE=CKF=,则,BK=,CK=BCBK=8CF=CKtan=(8)tan=8tanBE=xBE在RtEAB中,EB2=AE2+AB2,(6BE)2+x2=BE2解得BE=,CF=xBE=x=x2+x3,y=x2+x3(82x6)综上所述,y=【总结与反思】(1)先由等腰三角形中的三线合一,得出BOE=90,再由ABB+BEF=90,ABB+ABB=90,得出BEF=ABB;(2)当点F在线段CD上时,如图1所示作FMAB交AB于点E,在RTEAB中,利用勾股定理求出AE,再由tanABB=tanBEF列出关系式写出x的取值范围即可,当点F在点C下方时,如图2所示,利用勾股定理与三角函数,列出关系式,写出x的取值范围.考点三 线运动问题例4【规范解答】(1)证明:当t=2时,DH=AH=2,则H为AD的中点,如答图1所示又EFAD,EF为AD的垂直平分线,AE=DE,AF=DFAB=AC,ADAB于点D,ADBC,B=CEFBC,AEF=B,AFE=C,AEF=AFE,AE=AF,AE=AF=DE=DF,即四边形AEDF为菱形(2)解:如答图2所示,由(1)知EFBC,AEFABC,即,解得:EF=10tSPEF=EFDH=(10t)2t=t2+10t=(t2)2+10当t=2秒时,SPEF存在最大值,最大值为10,此时BP=3t=6(3)解:存在理由如下:若点E为直角顶点,如答图3所示,此时PEAD,PE=DH=2t,BP=3tPEAD,即,此比例式不成立,故此种情形不存在;若点F为直角顶点,如答图3所示,此时PEAD,PF=DH=2t,BP=3t,CP=103tPFAD,即,解得t=;若点P为直角顶点,如答图3所示过点E作EMBC于点M,过点F作FNBC于点N,则EM=FN=DH=2t,EMFNADEMAD,即,解得BM=t,PM=BPBM=3tt=t在RtEMP中,由勾股定理得:PE2=EM2+PM2=(2t)2+(t)2=t2FNAD,即,解得CN=t,PN=BCBPCN=103tt=10t在RtFNP中,由勾股定理得:PF2=FN2+PN2=(2t)2+(10t)2=t285t+100在RtPEF中,由勾股定理得:EF2=PE2+PF2,即:(10t)2=(t2)+(t285t+100)化简得:t235t=0,解得:t=或t=0(舍去)t=综上所述,当t=秒或t=秒时,PEF为直角三角形【总结与反思】(1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出PEF的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!