2019版中考数学总复习 圆的有关性质教案.doc

上传人:tian****1990 文档编号:3338902 上传时间:2019-12-12 格式:DOC 页数:2 大小:610.50KB
返回 下载 相关 举报
2019版中考数学总复习 圆的有关性质教案.doc_第1页
第1页 / 共2页
2019版中考数学总复习 圆的有关性质教案.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述
2019版中考数学总复习 圆的有关性质教案教学目标:知识目标:(1)理解圆、等圆、等弧等概念及圆的对称性,掌握点和圆的位置关系;(2)掌握垂径定理及其逆定理和圆心角,弧,弦,弦心距及圆周角之间的主要关系;掌握圆周角定理并会用它们进行计算;(3)掌握圆的内接四边形的对角互补,外角等于它的内对角的性质。(4)会用尺规作三角形的外接圆;了解三角形的外心的概念.能力目标:通过知识点和典型题的讲练,使学生熟练掌握本节课的知识点,再用题图变形与题组训练来培养学生综合运用知识的能力以及思维的灵活性和广阔性。情感目标: 通过题图变形与题组训练来激发学生学习数学的兴趣;同时将课本的题目与中考题结合在教学当中以进一步向学生强调“依纲靠本”的复习指导思想,强化学生的中考意识。知识结构圆圆内接四边形及性质重点、热点垂径定理及推论;圆心角、弧、弦、弦心距之间的关系定理. 运用圆内接四边形的性质解有关计算和证明题.【典型例析】例1.(1)2002.广西 如图7.1-1.OE、OF分别是O的弦AB、CD的弦心距,若OE=OF,则 (只需写出一个正确的结论). (2)2002. 广西 如图7.1-2.已知,AB为O的直径,D为弦AC的中点,BC=6cm,则OD= .特色 以上几道中考题均为直接运用圆的有关性质解题.解答(1)AB=CD或 AB=CD或ADBC, 直接运用圆心角、弧、弦、弦心距之间的关系定理. (2)由三角形的中位线定理知OD=BC拓展复习中要加强对圆的有关性质的理解、运用.例2.(1)2002.大连市下列命题中真命题是( ).A. 平分弦的直径垂直于弦 B.圆的半径垂直于圆的切线 C.到圆心的距离大于半径的点在圆内 D.等弧所对的圆心角相等(2)2002.河北 如图7.1-3.AB是O的直径,CD是O弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为( ).A.12cm B.10cm C.8cm D.6cm(3)2002.武汉市 已知如图7.1-4圆心角BOC=100,则圆周角BAC的度数是( ).A. 50 B.100 C.130 D.200特色着眼于基本知识的考查和辨析思维的评价.解答 (1) D (考查对基本性质的理解).(2) D (过O作OMCD,连结OC,由垂径定理得CM=CD=4,由勾股定理得OM=3,而AB两点到CD的距离和等于OM的2倍)(3) A (由圆周角定理可得)拓展 第(2)题中,涉及圆的弦一般作弦心距.例3.2002.广西南宁市圆内接四边形ABCD,A、B、C的度数的比是123,则这个四边形的最大角是 .特色运用圆内接四边形的性质进行简单计算.解答设A=x,则B=2x,C=3x . A+C=180, x+3x=180, x=45.A=45, B=90, C=135, D=90. 最大角为135.拓展此题着眼于基本性质、基本方法的考查.设未知数,列方程求解是解此类题的基本方法.例4. 2002.陕西 已知,如图7.1-5 BC为半圆O的直径,F是半圆上异于BC的点,A是BF的中点,ADBC于点D,BF交AD于点E. (1) 求证:BEBF=BDBC(2) 试比较线段BD与AE的大小,并说明道理.特色 此题是教材中的习题变形而来,它立意于考查分析、观察、比较、归纳等能力.解答 (1)连结FC,则BFFC.在BDF和BCF中,BFC=EDB=90 , FBC=EBD,BDEBFC, BEBC=BDBF.即 BFBE=BDBC.(2) AEBD , 连结AC、AB 则BAC=90., 1=2.又2+ABC=90, 3+ABD=90, 2=3, 1=3, AE=BE.在RtEBD中, BEBD, AEBD.拓展 若AC交BE于G,请想一想,在什么情况下线段BE、BG、FG有相等关系?例5.2001.吉林省如图7.4-1,矩形ABCD,AD=8,DC=6,在对角线AC上取一点O,以OC为半径的圆切AD于E,交BC于F,交CD于G.(1)求O的半径R;(2)设BFE=,GED=,请写出、90三者之间的关系式(只需写出一个),并证明你的结论.特色此题第二问设计为开放性问题,它立意考查学生分析、观察、比较、归纳能力.解答 (1)连结OE,则OEAD.四边形是矩形, D=90, OECD,AC=10.AOEACD, OECD=AOAC, R6=(10-R) 10,解之得: R=.(2)四边形是圆的内接四边形,EFB=EGC, EGC=90+, =90+ 或 90, 90 .拓展比较角的大小时,要善于发现角与角之间的关系,判断角是锐角还是直角、钝角.中考动态前瞻本节考查的题型常以填空、选择、解答题的形式出现,重点考查对圆的基本慨念、基本性质的理解及运用.特别是垂径定理及推论、圆周角定理及推论的运用是考查的重点内容. 对圆内接四边形的性质进行考查,主要以填空题、选择题、计算题、证明题的形式出现,利用圆内接四边形的性质主要是得到角相等或互补.一般不会考较复杂的计算、证明.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!