(课标版 5年高考3年模拟A版)2020年物理总复习 专题三 牛顿运动定律课件.ppt

上传人:tia****nde 文档编号:3311105 上传时间:2019-12-11 格式:PPT 页数:64 大小:1.47MB
返回 下载 相关 举报
(课标版 5年高考3年模拟A版)2020年物理总复习 专题三 牛顿运动定律课件.ppt_第1页
第1页 / 共64页
(课标版 5年高考3年模拟A版)2020年物理总复习 专题三 牛顿运动定律课件.ppt_第2页
第2页 / 共64页
(课标版 5年高考3年模拟A版)2020年物理总复习 专题三 牛顿运动定律课件.ppt_第3页
第3页 / 共64页
点击查看更多>>
资源描述
专题三牛顿运动定律,高考物理(课标专用),考点一牛顿运动定律,考点清单,考向基础一、牛顿第一定律1.内容一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。2.意义(1)揭示了物体在不受外力或所受合外力为零时的运动规律。(2)提出了一切物体都具有惯性,即保持原来运动状态的特性。(3)揭示了力与运动的关系,说明力不是维持物体运动状态的原因,而是改变物体运动状态的原因,即产生加速度的原因。,二、惯性1.定义:一切物体都有保持匀速直线运动状态或静止状态的性质,我们把这个性质叫做惯性。2.惯性大小的量度(1)质量是物体惯性大小的唯一量度,质量大的物体惯性大,反之物体惯性小。(2)惯性与物体是否受力、怎样受力无关,与物体是否运动、怎样运动无关,与物体所处的地理位置无关,一切有质量的物体都具有惯性。三、牛顿第二定律1.内容:物体的加速度的大小跟它受到的合外力成正比,跟它的质量成反比,加速度的方向跟合外力的方向相同。,2.表达式:F合=ma。该表达式只能在国际单位制中成立,因为公式F合=kma只有在国际单位制中才有k=1。3.物理意义反映物体运动的加速度大小、方向与所受合外力的关系,且这种关系是瞬时的。4.力的单位:当质量单位为kg,加速度单位为m/s2时,力的单位为N,即1N=1kgm/s2。5.牛顿第二定律的适用范围(1)牛顿第二定律只适用于相对地面静止或匀速直线运动的参考系。(2)牛顿第二定律只适用于宏观、低速运动的物体。,四、单位制、基本单位、导出单位1.单位制:基本单位和导出单位一起组成了单位制。(1)基本量:只要选定几个物理量的单位,就能够利用这几个单位推导出其他物理量的单位。这些被选定的物理量叫做基本量。(2)基本单位:基本物理量的单位。力学中的基本量有三个,它们是质量、长度、时间;它们的单位是基本单位,分别是kg、m、s。(3)导出单位:由基本单位根据物理公式推导出来的其他物理量的单位。,2.国际单位制中的基本单位,五、牛顿第三定律1.作用力与反作用力的关系作用力与反作用力的关系可总结为“三同、三异、三无关”。(1)三同(2)三异(3)三无关,2.一对作用力、反作用力和一对平衡力的区别,考向突破,考向一对牛顿第一、三定律和惯性的理解1.惯性的表现形式(1)物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态(静止或匀速直线运动)不变。(2)物体受到外力时,惯性表现为运动状态改变的难易程度。惯性大,物体运动状态难以改变;惯性小,物体运动状态容易改变。2.惯性定律与惯性的实质是不同的(1)惯性是物体保持原有运动状态不变的一种性质,与物体是否受力、受力的大小无关。(2)惯性定律(牛顿第一定律)则反映物体在一定条件下的运动规律。,3.牛顿第一定律与牛顿第二定律的关系(1)牛顿第一定律不是实验定律,它是以伽利略的“理想实验”为基础,经过科学抽象、归纳推理而总结出来的;牛顿第二定律是通过探究加速度与力和质量的关系得出的实验定律。(2)牛顿第一定律不是牛顿第二定律的特例,而是不受任何外力的理想情况,在此基础上,牛顿第二定律定量地指出了力和运动的联系:F=ma。,注意(1)惯性不是一种力,对物体受力分析时,不能把“惯性力”作为物体实际受到的力。(2)物体的惯性总是以“保持原状”或“反抗改变”两种形式表现出来。,例1一汽车在路面情况相同的公路上沿直线行驶,下面关于车速、惯性、质量和滑行位移的讨论,正确的是()A.车速越大,它的惯性越大B.质量越大,它的惯性越大C.车速越大,刹车后滑行的位移越大D.车速越大,刹车后滑行的位移越大,所以惯性越大,解析质量是惯性大小的唯一决定因素,惯性是物体的固有属性,质量越大,惯性越大,所以A错、B对。滑行位移应由刹车时的速度确定,因为刹车过程中,其加速度是相同的,根据v2-=2ax,知车速越大,其滑行位移越大,而与其惯性大小无关,所以C对、D错。,答案BC,例2如图所示,甲、乙两人在冰面上“拔河”。两人中间位置处有一分界线,约定先使对方过分界线者为赢。若绳子质量不计,冰面可看成光滑,则下列说法正确的是()A.甲对绳的拉力与绳对甲的拉力是一对平衡力B.甲对绳的拉力与乙对绳的拉力是作用力与反作用力C.若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利D.若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利,解析A项中两力是一对作用力与反作用力,A错;B项中两力是一对平衡力,B错;因m甲m乙,由a=知a甲x甲,C项正确;由x=at2知x与收绳的速度无关,D项错。,答案C,考向二对牛顿第二定律的理解,注意独立性原理是牛顿第二定律正交分解法的基础,根据独立性原理,把物体所受的各力分解在相互垂直的方向,在这两个方向分别列牛顿第二定律方程。这就是牛顿第二定律的正交分解法。,例3如图所示,质量为m的小球用一水平轻弹簧系住,并用倾角为60的光滑木板AB托住,小球恰好处于静止状态,在木板AB突然向下撤离的瞬间,小球的加速度为()A.0B.大小为g,方向竖直向下C.大小为g,方向垂直木板向下D.大小为2g,方向垂直木板向下,解析对于小球,开始时受三个力作用(重力、支持力和弹簧的弹力)而处于平衡状态,支持力FN=2mg,撤离木板AB瞬间,支持力消失,重力和弹力不变,且二者的合力与原支持力等大反向,由牛顿第二定律可得,小球的加速度a=2g,方向垂直木板向下,选D。,答案D,例4如图所示,质量为m的人站在自动扶梯上,扶梯正以加速度a向上减速运动,a与水平方向的夹角为。求人受到的支持力和摩擦力的大小。,解题导引,解析解法一以人为研究对象,受力分析如图(a)所示,建立如图所示的坐标系,并将加速度分解为水平方向加速度ax和竖直方向加速度ay,如图(b)所示,则ax=acos,ay=asin。由牛顿第二定律得F静=max,mg-FN=may求得F静=macos,FN=m(g-asin)。,解法二以人为研究对象,建立如图所示坐标系,并规定正方向。根据牛顿第二定律得x方向mgsin-FNsin-F静cos=may方向mgcos+F静sin-FNcos=0由两式可解得FN=m(g-asin),F静=-macosF静为负值,说明摩擦力的实际方向与假设方向相反,为水平向左。,答案m(g-asin)macos,考点二牛顿运动定律的应用,考向基础一、应用牛顿第二定律解决的两类问题1.已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿运动定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体运动的情况。2.已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的其他外力。二、实重和视重1.实重:物体实际所受的重力,它与物体的运动状态无关。,2.视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力。此时弹簧测力计的示数或台秤的示数即为视重。三、超重和失重的应用此类问题多为定性分析台秤上放物体或弹簧测力计下悬吊物体时的示数的变化。分析此类问题时,要特别注意以下几点:1.超重、失重不是物体重力增加或减少了,而是物体对水平支持面的压力或对竖直悬线的拉力变大或变小了,重力的大小是没有变化的,仍为mg。2.超重、失重与物体的速度无关,只取决于物体的加速度方向。3.对系统超重、失重的判定不能只看某一物体,要综合分析某一物体的,加速运动会不会引起其他物体运动状态的变化。例如台秤上放一盛水容器,一细线拴一木球,线另一端拴于盛水容器的底部,剪断细线,木球加速上升的同时有相同体积的水以相等的加速度在加速下降,综合起来,台秤示数会减小。若不能注意到这一点,会得出相反的错误结论。4.在完全失重的状态下,由重力产生的一切物理现象都会消失。如单摆停摆、天平失效、浸没于液体中的物体不再受浮力、水银气压计失效等,但测力的仪器弹簧测力计是可以使用的,因为弹簧测力计是根据F=kx制成的,而不是根据重力制成的。,考向突破,考向一利用图像解答牛顿运动定律问题1.处理图像问题的关键是搞清图像所揭示的物理规律或物理量间的函数关系,全面系统地看懂图像中的“轴”、“线”、“点”、“斜率”、“面积”、“截距”等所表示的物理意义。在运用图像求解问题时,还需要具有将物理现象转化为图像问题的能力。运用图像解题包括两个方面:用给定的图像解答问题,根据题意去作图,运用图像去解答问题。2.图像语言、函数语言及文字语言构成表达物理过程与物理参数关系的三种语言。要求能够在任意两种语言间相互转换,以便用相对简单的方法解决物理问题。,3.文字语言、函数语言、图像语言与物理情景之间的相互转换,是确立解题方向、迅速明确解题方法的前提。,例1如图甲所示,质量m=1kg的物块在平行斜面向上的拉力F作用下从静止开始沿斜面向上运动,t=0.5s时撤去拉力,利用速度传感器得到其速度随时间的变化关系图像(v-t图像)如图乙所示,g取10m/s2,求:(1)2s内物块的位移大小s和通过的路程L;(2)沿斜面向上运动的两个阶段加速度大小a1、a2和拉力大小F。,解析(1)在2s内,由图乙知:物块沿斜面向上运动的最大距离:s1=21m=1m物块下滑的距离:s2=11m=0.5m所以位移大小s=s1-s2=0.5m路程L=s1+s2=1.5m(2)由图乙知,所求两个阶段加速度的大小a1=4m/s2a2=4m/s2设斜面倾角为,斜面对物块的摩擦力为f,根据牛顿第二定律有,00.5s内:F-f-mgsin=ma10.51s内:f+mgsin=ma2解得F=8N,答案(1)0.5m1.5m(2)4m/s24m/s28N,考向二连接体一、加速度相同的连接体问题1.若求解整体的加速度,可用整体法。把整个系统看做一个研究对象,分析整体受外力情况,再由牛顿第二定律求出加速度。2.若求解系统内力,可先用整体法求出整体的加速度,再用隔离法将内力转化成外力,由牛顿第二定律求解。,例2(2017河北保定一模,18)如图所示,一质量M=3kg、倾角为=45的斜面体放在光滑水平地面上,斜面体上有一质量为m=1kg的光滑楔形物体。用一水平向左的恒力F作用在斜面体上,系统中两物体恰好保持相对静止地向左运动。重力加速度为g=10m/s2,下列判断正确的是()A.系统做匀速直线运动B.F=40N,C.斜面体对楔形物体的作用力FN=5ND.增大力F,楔形物体将相对斜面体沿斜面向上运动,解析对整体受力分析如图甲所示,由牛顿第二定律有F=(M+m)a,对楔形物体受力分析如图乙所示,由牛顿第二定律有mgtan45=ma,可得F=40N,a=10m/s2,A错,B对。斜面体对楔形物体的作用力FN=mg=10N,C错。外力F增大,则斜面体加速度增加,楔形物体不能获得那么大的加速度,将会相对斜面体沿斜面向上运动,D对。答案BD,二、加速度不同的连接体问题由于系统内各个物体的加速度不同,一般应采用隔离法。以各个物体分别作为研究对象,对每个研究对象进行受力和运动情况分析,分别应用牛顿第二定律建立方程,并注意应用各个物体的相互作用关系,联立求解。,例3如图所示,质量为M的木板可沿倾角为的光滑斜面下滑,木板上站着一个质量为m的人,求:(1)为了保持木板与斜面相对静止,人运动的加速度是多少?(2)为了保持人与斜面相对静止,木板运动的加速度是多少?,解题导引,解析(1)为了使木板与斜面保持相对静止,必须满足木板在斜面方向上的合力为零,所以人施于木板的摩擦力应沿斜面向上,故人应加速向下跑。现分别对木板和人应用牛顿第二定律。对木板进行受力分析,如图甲所示,沿斜面方向有:Mgsin-f1=0,对人进行受力分析,如图乙所示,mgsin+f1=ma人(a人为人相对斜面的加速度),f1=f1解得a人=gsin,方向沿斜面向下。(2)为了使人与斜面保持相对静止,必须满足人在木板上所受合力为零,所以木板施于人的摩擦力应沿斜面向上,故人相对木板向上跑,木板相对斜面向下滑,但人相对斜面静止不动。设木板相对斜面的加速度为a木,现分别对木板和人进行受力分析,由牛顿第二定律有:,对木板:Mgsin+f2=Ma木,对人:mgsin=f2,f2=f2解得a木=gsin,方向沿斜面向下,即人相对木板向上加速跑动,而木板沿斜面向下滑动,此时人相对斜面静止不动。,答案见解析,方法1瞬时性问题的处理1.物体所受的外力F与其所产生的加速度a具有瞬时对应关系,二者总是同时产生、同时消失、同时变化。具体可简化为以下两种模型:,方法技巧,2.与轻弹簧相关的瞬时性问题常见情景图例,例1如图甲、乙所示,细线均不可伸长,两小球均处于平衡状态且质量相同。如果突然把两水平细线剪断,剪断瞬间小球A的加速度的大小为,方向为;小球B的加速度的大小为,方向为;剪断瞬间图甲中倾斜细线OA与图乙中弹簧的拉力之比为(角已知)。,解题导引,解析设两球质量均为m,剪断水平细线瞬间,对A球受力分析,如图(a)所示,球A将沿圆弧摆下,故剪断水平细线瞬间,小球A的加速度a1方向沿圆周的切线方向向下,即垂直倾斜细线OA向下。则有FT1=mgcos;F1=mgsin=ma1,得a1=gsin。,答案见解析,水平细线剪断瞬间,B球所受重力mg和弹簧弹力FT2不变,小球B的加速度a2方向水平向右,如图(b)所示,则FT2=,F2=mgtan=ma2,所以a2=gtan。甲图中倾斜细线OA与乙图中弹簧的拉力之比为=cos2。,方法2传送带问题的处理处理传送带问题的一般步骤,1.水平传送带模型问题处理水平放置的传送带问题,首先应对放在传送带上的物体进行受力分析,分清物体所受摩擦力是阻力还是动力;然后对物体进行运动状态分析,即对静态动态终态进行分析和判断,对其全过程作出合理分析、推断,进而采用有关物理规律求解。这类问题可分为:运动学型;动力学型;能量守恒型;图像型。,例2水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图。紧绷的传送带AB始终保持恒定的速率v=1m/s运行,一质量为m=4kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动。设行李与传送带之间的动摩擦因数=0.1,A、B间的距离L=2m,g取10m/s2。(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;,(3)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率。,解题导引,解析(1)滑动摩擦力Ff=mg=0.1410N=4N,加速度a=g=0.110m/s2=1m/s2。(2)行李达到与传送带相同速率后不再加速,则v=at1,解得t1=s=1s。(3)行李始终匀加速运行时传送时间最短,加速度仍为a=1m/s2,当行李到达右端时,有=2aL,解得vmin=m/s=2m/s,所以传送带对应的最小运行速率为2m/s。行李最短运行时间由vmin=atmin,得tmin=s=2s。,答案(1)4N1m/s2(2)1s(3)2s2m/s,2.倾斜传送带模型问题求解的关键在于认真分析物体与传送带的相对运动情况,从而确定是否受到滑动摩擦力作用。如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况。当物体速度与传送带速度相等时物体所受的摩擦力有可能发生突变。,例3如图所示,传送带与水平地面夹角=37,A到B长度L为16m,传送带以10m/s的速率逆时针转动。在传送带上端A处无初速度地放一个质量为0.5kg的物体,它与传送带之间的动摩擦因数为0.5。求物体从A运动到B所需时间是多少?(sin37=0.6,cos37=0.8),解题导引,解析物体放在传送带上后,开始阶段,由于传送带的速度大于物体的速度,传送带给物体一个沿传送带向下的滑动摩擦力F,物体受力情况如图甲所示。物体由静止开始加速,由牛顿第二定律有mgsin+mgcos=ma1,得a1=10(0.6+0.50.8)m/s2=10m/s2。物体加速至与传送带速度相等需要的时间t1=s=1s,t1时间内位移x=a1=5m。甲乙,由于tan,物体在重力作用下将继续加速运动,当物体速度大于传送带速度时,传送带给物体一沿传送带向上的滑动摩擦力F。此时物体受力情况如图乙所示,由牛顿第二定律有mgsin-mgcos=ma2,得a2=2m/s2。设后一阶段物体滑至底端所用的时间为t2,由L-x=vt2+a2,解得t2=1s,t2=-11s(舍去)。,所以物体由A到B的时间t=t1+t2=2s。,答案2s,方法3解答连接体中临界极值问题的方法1.极限法:把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的。2.假设法:临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题。3.数学法:将物理过程转化为数学公式,根据数学表达式解出临界条件。,例4(2017河北石家庄二模,20)如图甲所示,一质量为M的长木板静置于光滑水平面上,其上放置一质量为m的小滑块。木板受到水平拉力F作用时,用传感器测出长木板的加速度a与水平拉力F的关系如图乙所示,重力加速度g=10m/s2,下列说法正确的是()A.小滑块与长木板之间的动摩擦因数为0.1B.当水平拉力F=7N时,长木板的加速度大小为3m/s2C.当水平拉力F增大时,小滑块的加速度一定增大D.小滑块的质量m=2kg,解析由题可知,当06N时二者间出现相对滑动,对木板有F-mg=Ma,即a=F-,可见此时a-F图线的斜率为木板质量的倒数,可得M=1kg,则m=2kg,D正确。由于出现相对滑动后小滑块所受合外力等于木板对它产生的摩擦力,不再随F的增大而变化,则出现相对滑动后小滑块的加速度达到最大,且不再变化,由图可知小滑块的最大加速度为a大=2m/s2,由牛顿第二定律有mg=ma大,得=0.2,A、C错误。将F=7N代入a=F-,得a=3m/s2,B正确。,答案BD,解题关键拉力F=6N,加速度a=2m/s2时,长木板和小滑块开始相对滑动。06N时,对长木板和小滑块分别分析。,方法4滑块滑板模型问题1.模型特点涉及两个物体,并且物体间存在相对滑动。2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移大小之差等于板长;反向运动时,位移大小之和等于板长。设板长为L,滑块位移大小为x1,滑板位移大小为x2同向运动时:L=x1-x2,反向运动时:L=x1+x23.解题步骤,例5一长木板在水平地面上运动,在t=0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度-时间图像如图所示。已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。取重力加速度的大小g=10m/s2,求:(1)物块与木板间、木板与地面间的动摩擦因数;(2)从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小。,解题导引,解析(1)从t=0时开始,木板与物块之间的摩擦力使物块加速,使木板减速,此过程一直持续到物块和木板具有共同速度为止。由图可知,在t1=0.5s时,物块和木板的速度相同。设t=0到t=t1时间间隔内,物块和木板的加速度大小分别为a1和a2,则a1=a2=式中v0=5m/s、v1=1m/s分别为木板在t=0、t=t1时速度的大小。设物块和木板的质量为m,物块和木板间、木板与地面间的动摩擦因数分别为1、2,由牛顿第二定律得1mg=ma1,(1+22)mg=ma2联立式得1=0.202=0.30(2)在t1时刻后,地面对木板的摩擦力阻碍木板运动,物块与木板之间的摩擦力改变方向。设物块与木板之间的摩擦力大小为f,物块和木板的加速度大小分别为a1和a2,则由牛顿第二定律得f=ma122mg-f=ma2假设f1mg,与假设矛盾。故f=1mg,由式知,物块加速度的大小a1等于a1;物块的v-t图像如图中点划线所示。由运动学公式可推知,物块和木板相对于地面的运动距离分别为s1=2s2=t1+,物块相对于木板的位移的大小为s=s2-s1联立式得s=1.125m,答案(1)0.200.30(2)1.125m,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!