2019年高考数学真题分类汇编 15 几何证明选讲 文.doc

上传人:tian****1990 文档编号:3304447 上传时间:2019-12-11 格式:DOC 页数:2 大小:123.50KB
返回 下载 相关 举报
2019年高考数学真题分类汇编 15 几何证明选讲 文.doc_第1页
第1页 / 共2页
2019年高考数学真题分类汇编 15 几何证明选讲 文.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述
2019年高考数学真题分类汇编 15 几何证明选讲 文考点一相似三角形的判定与性质1.(xx天津,7,5分)如图,ABC是圆的内接三角形,BAC的平分线交圆于点D,交BC于点E,过点B的圆的切线与AD的延长线交于点F.在上述条件下,给出下列四个结论:BD平分CBF;FB2=FDFA;AECE=BEDE;AFBD=ABBF.则所有正确结论的序号是()A. B. C. D.答案D2.(xx广东,15,5分)(几何证明选讲选做题)如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=.答案33.(xx陕西,15B,5分)(几何证明选做题)如图,ABC中,BC=6,以BC为直径的半圆分别交AB,AC于点E,F,若AC=2AE,则EF=.答案3考点二直线与圆的位置关系4.(xx课标,22,10分)选修41:几何证明选讲如图,四边形ABCD是O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(1)证明:D=E;(2)设AD不是O的直径,AD的中点为M,且MB=MC,证明:ADE为等边三角形.解析(1)由题设知A,B,C,D四点共圆,所以D=CBE.由已知得CBE=E,故D=E.(2)设BC的中点为N,连结MN,则由MB=MC知MNBC,故O在直线MN上.又AD不是O的直径,M为AD的中点,故OMAD,即MNAD.所以ADBC,故A=CBE.又CBE=E,故A=E.由(1)知,D=E,所以ADE为等边三角形.5.(xx课标,22,10分)选修41:几何证明选讲如图,P是O外一点,PA是切线,A为切点,割线PBC与O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交O于点E.证明:(1)BE=EC;(2)ADDE=2PB2.解析(1)连结AB,AC,由题设知PA=PD,故PAD=PDA.因为PDA=DAC+DCA,PAD=BAD+PAB,DCA=PAB,所以DAC=BAD,从而=,因此BE=EC.(2)由切割线定理得PA2=PBPC.因为PA=PD=DC,所以DC=2PB,BD=PB,由相交弦定理得ADDE=BDDC,所以ADDE=2PB2.6.(xx辽宁,22,10分)选修41:几何证明选讲如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连结DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(1)求证:AB为圆的直径;(2)若AC=BD,求证:AB=ED.证明(1)因为PD=PG,所以PDG=PGD.由于PD为切线,故PDA=DBA,又由于PGD=EGA,故DBA=EGA.所以DBA+BAD=EGA+BAD,从而BDA=PFA.由于AFEP,所以PFA=90,于是BDA=90,故AB是直径.(2)连结BC,DC.由于AB是直径,故BDA=ACB=90.在RtBDA与RtACB中,AB=BA,AC=BD,从而RtBDARtACB.于是DAB=CBA.又因为DCB=DAB,所以DCB=CBA,故DCAB.由于ABEP,所以DCEP,DCE为直角,于是ED为直径,由(1)得ED=AB.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!