2019年高考数学真题分类汇编 10.4 直线与圆锥曲线的位置关系 文.doc

上传人:tian****1990 文档编号:3304385 上传时间:2019-12-11 格式:DOC 页数:3 大小:50.50KB
返回 下载 相关 举报
2019年高考数学真题分类汇编 10.4 直线与圆锥曲线的位置关系 文.doc_第1页
第1页 / 共3页
2019年高考数学真题分类汇编 10.4 直线与圆锥曲线的位置关系 文.doc_第2页
第2页 / 共3页
2019年高考数学真题分类汇编 10.4 直线与圆锥曲线的位置关系 文.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述
2019年高考数学真题分类汇编 10.4 直线与圆锥曲线的位置关系 文考点直线与圆锥曲线的位置关系1.(xx辽宁,20,12分)圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图).(1)求点P的坐标;(2)焦点在x轴上的椭圆C过点P,且与直线l:y=x+交于A,B两点.若PAB的面积为2,求C的标准方程.解析(1)设切点坐标为(x0,y0)(x00,y00),则切线斜率为-,切线方程为y-y0=-(x-x0),即x0x+y0y=4.此时,两个坐标轴的正半轴与切线围成的三角形面积为S=,由+=42x0y0知当且仅当x0=y0=时x0y0有最大值,即S有最小值,因此点P的坐标为(,).(2)设C的标准方程为+=1(ab0),点A(x1,y1),B(x2,y2).由点P在C上知+=1,并由得b2x2+4x+6-2b2=0,又x1,x2是方程的根,因此由y1=x1+,y2=x2+,得|AB|=|x1-x2|=.由点P到直线l的距离为及SPAB=|AB|=2得b4-9b2+18=0,解得b2=6或3,因此b2=6,a2=3(舍)或b2=3,a2=6,从而所求C的方程为+=1.2.(xx陕西,20,13分)已知椭圆+=1(ab0)经过点(0,),离心率为,左,右焦点分别为F1(-c,0),F2(c,0).(1)求椭圆的方程;(2)若直线l:y=-x+m与椭圆交于A,B两点,与以F1F2为直径的圆交于C,D两点,且满足=,求直线l的方程.解析(1)由题设知解得a=2,b=,c=1,椭圆的方程为+=1.(2)由(1)知,以F1F2为直径的圆的方程为x2+y2=1,圆心到直线l的距离d=,由d1得|m|.(*)|CD|=2=2=.设A(x1,y1),B(x2,y2),由得x2-mx+m2-3=0,由根与系数关系可得x1+x2=m,x1x2=m2-3.|AB|=.由=得=1,解得m=,满足(*).直线l的方程为y=-x+或y=-x-.3.(xx湖北,22,14分)在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.(1)求轨迹C的方程;(2)设斜率为k的直线l过定点P(-2,1).求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.解析(1)设点M(x,y),依题意得|MF|=|x|+1,即=|x|+1,化简整理得y2=2(|x|+x).故点M的轨迹C的方程为y2=(2)在点M的轨迹C中,记C1:y2=4x,C2:y=0(x0),依题意,可设直线l的方程为y-1=k(x+2).由方程组可得ky2-4y+4(2k+1)=0.(i)当k=0时,y=1.把y=1代入轨迹C的方程,得x=.故此时直线l:y=1与轨迹C恰好有一个公共点.(ii)当k0时,方程的判别式为=-16(2k2+k-1).设直线l与x轴的交点为(x0,0),则由y-1=k(x+2),令y=0,得x0=-.若由解得k,即当k(-,-1)时,直线l与C1没有公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.若或由解得k或-k0,即当k时,直线l与C1只有一个公共点,与C2有一个公共点.当k时,直线l与C1有两个公共点,与C2没有公共点.故当k时,直线l与轨迹C恰好有两个公共点.若由解得-1k-或0kb0)的离心率为,直线y=x被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且ADAB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2.证明存在常数使得k1=k2,并求出的值;(ii)求OMN面积的最大值.解析(1)由题意知=,可得a2=4b2,椭圆C的方程可简化为x2+4y2=a2.将y=x代入可得x=,因此=,可得a=2.因此b=1,所以椭圆C的方程为+y2=1.(2)(i)设A(x1,y1)(x1y10),D(x2,y2),则B(-x1,-y1),因为直线AB的斜率kAB=,又ABAD,所以直线AD的斜率k=-.设直线AD的方程为y=kx+m,由题意知k0,m0.由可得(1+4k2)x2+8mkx+4m2-4=0.所以x1+x2=-,因此y1+y2=k(x1+x2)+2m=.由题意知x1-x2,所以k1=-=.所以直线BD的方程为y+y1=(x+x1).令y=0,得x=3x1,即M(3x1,0).可得k2=-.所以k1=-k2,即=-.因此存在常数=-使得结论成立.(ii)直线BD的方程为y+y1=(x+x1),令x=0,得y=-y1,即N.由(i)知M(3x1,0),可得OMN的面积S=3|x1|y1|=|x1|y1|.因为|x1|y1|+=1,当且仅当=|y1|=时等号成立,此时S取得最大值,所以OMN面积的最大值为.5.(xx大纲全国,22,12分)已知抛物线C:y2=2px(p0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A、B两点,若AB的垂直平分线l与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.解析(1)设Q(x0,4),代入y2=2px得x0=.所以|PQ|=,|QF|=+x0=+.由题设得+=,解得p=-2(舍去)或p=2.所以C的方程为y2=4x.(5分)(2)依题意知l与坐标轴不垂直,故可设l的方程为x=my+1(m0).代入y2=4x得y2-4my-4=0.设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4.故AB的中点为D(2m2+1,2m),|AB|=|y1-y2|=4(m2+1).又l的斜率为-m,所以l的方程为x=-y+2m2+3.将上式代入y2=4x,并整理得y2+y-4(2m2+3)=0.设M(x3,y3),N(x4,y4).则y3+y4=-,y3y4=-4(2m2+3).故MN的中点为E,|MN|=|y3-y4|=.(10分)由于MN垂直平分AB,故A、M、B、N四点在同一圆上等价于|AE|=|BE|=|MN|,从而|AB|2+|DE|2=|MN|2,即4(m2+1)2+=,化简得m2-1=0,解得m=1或m=-1.所求直线l的方程为x-y-1=0或x+y-1=0.(12分)
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!