资源描述
2019-2020年八年级数学下册 6.1 你能肯定吗示范教案1 北师大版课时安排8课时第一课时课 题6.1 你能肯定吗教学目标(一)教学知识点1.通过观察、猜测得到的结论不一定正确.2.让学生初步了解,要判定一个数学结论正确与否,需要进行有根有据的推理.(二)能力训练要求1.通过探索,让学生初步了解数学中推理的重要性.2.初步了解要判定一个数学结论正确与否,需要进行有根有据的推理.教学重点判定一个结论正确与否需进行推理.教学难点理解数学推理的重要性.教学方法自学、讨论、引导法.教具准备投影片四张第一张:想一想,(记作投影片6.1 A)第二张:做一做,(记作投影片6.1 B)第三张:做一做,(记作投影片6.1 C)第四张:议一议,(记作投影片6.1 D)教学过程.巧设现实情境,引入新课师在现实生活中,我们常采用观察的方法来了解世界.在数学学习中,我们通过观察、度量、猜测来得到一些结论.那这样得到的结论都是正确的吗?如果不是,那么用什么方法才能说明它的正确性呢?生需要推理证明.师很好.从今天开始,我们来学习第六章:证明(一).讲授新课师下面我们来动手画一画,然后归纳、总结(出示投影片6.1 A)图61如图61,四边形ABCD四边的中点分别为E、F、G、H.度量四边形EFGH的边和角,你会发现什么结论?生甲我画出四边形ABCD,找到四边形的中点E、F、G、H后,量了量四边形EFGH的边发现:EF=GH,EH=GF.角EHG=EFG,HEF=HGF.生乙由此说明:四边形EFGH是平行四边形.师很好.如果改变四边形ABCD的形状,你还能得到类似的结论吗?大家再来动手画一画、量一量.生丙我改变了四边形ABCD的形状后,它们四边的中点所围成的四边形EFGH仍然是对边相等、对角也相等.即:四边形EFGH是平行四边形.生丁老师,我看到周围同学画的四边形ABCD的形状都与我的不一样,但连接这四条边的中点E、F、G、H所得到的四边形EFGH经测量知:它们都是平行四边形.所以由此可得:任意四边形的四条边的中点所围成的四边形都是平行四边形.师丙同学的结论,你能肯定吗?同学们来讨论一下.师生共析好.在八年级上册我们已经知道:连接三角形的两边中点的线段是三角形的中位线.由于E、F、G、H是四边形ABCD各边的中点,所以可把这个四边形变为两个三角形.即:可以连接AC,也可以连接BD.把四边形ABCD变为ABC与ADC或ABD与BDC.图62现在我们来连接AC.如图62.在ABC中,EF是ABC的中位线,根据“三角形的中位线平行于第三边,并且等于第三边的一半”可得:EF平行于AC且等于AC的一半.同样,在ADC中,GH是ADC的中位线,则GH平行于AC且等于AC的一半.由“两直线都与第三条直线平行,则这两条直线互相平行”可知:EFGH.又因为:EF=AC,GH=AC,所以得EF=GH.这样由平行四边形的判定:一组对边平行且相等的四边形是平行四边形.可以得到:四边形EFGH是平行四边形.即:连接AC师刚才我们连接了四边形的对角线后,通过推理得证了:连接任意四边形四边的中点所组成的图形是平行四边形.注:本题连接BD与连接AC的推理过程一样.通过观察、猜测、度量得到的结论是否正确,需要用推理过程得证.下面我们来做一做(出示投影片6.1 B)当n=0、1、2、3、4、5时,代数式n2n+11的值是质数吗?你能否得到结论:对于所有自然数n,n2n+11的值都是质数?与同伴交流生甲当n=0时,n2n+11=11.当n=1时,n2n+11=11.当n=2时,n2n+11=13.当n=3时,n2n+11=17.当n=4时,n2n+11=23.当n=5时,n2n+11=31.由此可知:当n=0、1、2、3、4、5时,代数式n2n+11的值都是质数.生乙这样我们就可以得到结论:对于所有自然数n,n2n+11的值都是质数.师你一定能肯定吗?师好,下面我们再来做一做(出示投影片6.1 C)图63如图63,假如用一根比地球赤道长1 m的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一颗红枣吗?能放进一个拳头吗?与同伴进行交流.生甲能放进一颗红枣,也能放进一个拳头.生乙不行.师同学们讨论得很精彩,但都不能肯定,那么怎样才能肯定呢?要判断一个数学结论是否正确,仅仅依靠经验、观察或实验是不够的,必须一步一步、有根有据地进行推理.那大家来想一想、议一议(出示投影片6.1 D)(1)在数学学习中,你用到过推理吗?举例说明.(2)在日常生活中,你用到过推理吗?举例说明.生甲在数学学习中,我们曾用到过推理.如:判定一个四边形是不是平行四边形;生乙还有判定一个四边形是否是梯形.生丙在日常生活中,我们也常用到推理.如:某同学的笔丢了.然后通过推理,说明另一同学拿了.师同学们举出了许多的例子,说明不论在日常生活中,还是在数学学习中,要判断一件事情或一个结论正确与否,必须进行一步一步有根有据地推论.下面我们来通过练习熟悉本节课的内容.课堂练习(一)课本P174随堂练习.1、2、3.1.图64中两条线段a与b的长度相等吗?请你先观察,再度量一下.图64答案:a与b的长度相等.图652.图65中三条线段a、b、c,哪一条线段与线段d在同一直线上?请你先观察,再用三角尺验证一下.答案:线段b与线段d在同一直线上.3.当n为正整数时,n2+3n+1的值一定是质数吗?答案:经验证:当n为正整数时,n2+3n+1的值一定是质数.(二)课本P175 读一读:“费马的失误”.(三)看课本P173175,然后小结.课时小结本节课主要研究了:要判断一个数学结论是否正确,需要有根有据地进行推理.课后作业(一)课本P176习题6.1 1、2、3.(二)1.预习内容P1771802.预习提纲(1)定义的概念是什么?(2)命题的概念是什么?.活动与探究1.有没有这样的质数,当它加上10和14时仍为质数.若有,求出来;若没有,请证明.过程这是一个找符合条件的质数问题.由于质数分布无一定规律,因此从最小的质数试验起.希望能找到所求的质数,然后再加以逻辑的证明.结果因为2+10=12,2+14=16,所以质数2不适合.因为3+10=13,3+14=17,所以质数3符合要求.因为5+10=15,5+14=19,所以质数5不合要求.因为7+10=17,7+14=21,所以质数7不适合.因为11+10=21,11+14=25,所以质数11不适合.从上面的观察,3合乎要求,但符合条件的质数是否只有3呢?这必须加以证明.证明除了3以外的所有正整数加上10和14均不能是质数.为此把正整数按模3同余分类.即:3k1,3k+1(k为正整数).因为(3k1)+10=3k+9=3(k+3)是合数,(3k+1)+14=3k+15=3(k+5)是合数,所以3k1和3k+1这两类整数中的质数加上10和14后不能都是质数.因此,在3k1和3k+1两类整数中的质数加上10和14后当然不能都是质数.对于3k这类整数,只有在k=1时,3k才是质数,其余均为整数.所以所求的质数只有3.板书设计6.1 你能肯定吗一、画任意四边形二、做一做n2n+11的值是质数要判断一个数学结论是否正确,必须有根有据地推理.三、议一议四、课堂练习读一读五、课后作业
展开阅读全文