2019-2020年九年级数学 第二章 二次函数教案 北师大版.doc

上传人:xt****7 文档编号:3276210 上传时间:2019-12-10 格式:DOC 页数:12 大小:1,010.50KB
返回 下载 相关 举报
2019-2020年九年级数学 第二章 二次函数教案 北师大版.doc_第1页
第1页 / 共12页
2019-2020年九年级数学 第二章 二次函数教案 北师大版.doc_第2页
第2页 / 共12页
2019-2020年九年级数学 第二章 二次函数教案 北师大版.doc_第3页
第3页 / 共12页
点击查看更多>>
资源描述
2019-2020年九年级数学 第二章 二次函数教案 北师大版学习目标:1.探索并归纳二次函数的定义.2.能够表示简单变量之间的二次函数关系.学习重点:1.经历探索二次函数关系的过程,获得用二次函数表示变量之间关系的体验.2.能够表示简单变量之间的二次函数.学习难点:经历探索二次函数关系的过程,获得用二次函数表示变量之间关系的体验.学习方法:讨论探索法.学习过程:【例1】 函数y=(m2)x2x1是二次函数,则m= 【例2】 下列函数中是二次函数的有( )y=x;y=3(x1)22;y=(x3)22x2;y=xA1个 B2个 C3个 D4个【例3】正方形的边长是5,若边长增加x,面积增加y,求y与x之间的函数表达式1、 已知正方形的周长为20,若其边长增加x,面积增加y,求y与x之间的表达式2、 已知正方形的周长是x,面积为y,求y与x之间的函数表达式3、已知正方形的边长为x,若边长增加5,求面积y与x的函数表达式【例4】如果人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存,到期支取时,银行将扣除利息的20%作为利息税请你写出两年后支付时的本息和y(元)与年利率x的函数表达式【例5】某商场将进价为40元的某种服装按50元售出时,每天可以售出300套据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场将售价定为x,请你得出每天销售利润y与售价的函数表达式课后练习: 作业: 小结:教后记:2.2 结识抛物线学习目标:经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究二次函数性质的经验掌握利用描点法作出y=x2的图象,并能根据图象认识和理解二次函数y=x2的性质能够作为二次函数y=x2的图象,并比较它与y=x2图象的异同,初步建立二次函数表达式与图象之间的联系学习重点:利用描点法作出y=x2的图象过程中,理解掌握二次函数y=x2的性质,这是掌握二次函数y=ax2bxc(a0)的基础,是二次函数图象、表达式及性质认识应用的开始,只有很好的掌握,才会把二次函数学好只要注意图象的特点,掌握本质,就可以学好本节学习难点:函数图象的画法,及由图象概括出二次函数y=x2性质,它难在由图象概括性质,结合图象记忆性质学习方法:探索总结运用法.学习过程:一、作二次函数y=x的图象。二、议一议:1.你能描述图象的形状吗?与同伴交流。2.图象与x轴有交点吗?如果有,交点的坐标是什么?3.当x0时呢?4.当x取什么值时,y的值最小?5.图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流。三、y=x的图象的性质:三、例题:【例1】求出函数y=x2与函数y=x2的图象的交点坐标【例2】已知a1,点(a1,y1)、(a,y2)、(a1,y3)都在函数y=x2的图象上,则( )Ay1y2y3 By1y3y2 Cy3y2y1 Dy2y1y3四、练习 作业: 小结:教后记:2.3 刹车距离与二次函数学习目标:1经历探索二次函数y=ax2和y=ax2c的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验2会作出y=ax2和y=ax2c的图象,并能比较它们与y=x2的异同,理解a与c对二次函数图象的影响3能说出y=ax2c与y=ax2图象的开口方向、对称轴和顶点坐标4体会二次函数是某些实际问题的数学模型学习重点:二次函数y=ax2、y=ax2c的图象和性质,因为它们的图象和性质是研究二次函数y=ax2bxc的图象和性质的基础我们在学习时结合图象分别从开口方向、对称轴、顶点坐标、最大(小值)、函数的增减性几个方面记忆分析学习难点:由函数图象概括出y=ax2、y=ax2c的性质函数图象都由(1)列表,(2)描点、连线三步完成我们可根据函数图象来联想函数性质,由性质来分析函数图象的形状和位置学习方法:类比学习法。学习过程:一、复习:二次函数y=x2 与y=-x2的性质:抛物线y=x2y=-x2对称轴顶点坐标开口方向位置增减性最值二、问题引入:你知道两辆汽车在行驶时为什么要保持一定距离吗?刹车距离与什么因素有关?有研究表明:汽车在某段公路上行驶时,速度为v(km/h)汽车的刹车距离s(m)可以由公式:晴天时:;雨天时:,请分别画出这两个函数的图像:三、动手操作、探究:1.在同一平面内画出函数y=2x2与y=2x2+1的图象。2.在同一平面内画出函数y=3x2与y=3x2-1的图象。比较它们的性质,你可以得到什么结论?四、例题:【例1】 已知抛物线y=(m1)x开口向下,求m的值【例2】k为何值时,y=(k2)x是关于x的二次函数?【例3】在同一坐标系中,作出函数y=3x2,y=3x2,y=x2,y=x2的图象,并根据图象回答问题:(1)当x=2时,y=x2比y=3x2大(或小)多少?(2)当x=2时,y=x2比y=3x2大(或小)多少?【例4】已知直线y=2x3与抛物线y=ax2相交于A、B两点,且A点坐标为(3,m)(1)求a、m的值;(2)求抛物线的表达式及其对称轴和顶点坐标;(3)x取何值时,二次函数y=ax2中的y随x的增大而减小;(4)求A、B两点及二次函数y=ax2的顶点构成的三角形的面积【例5】有一座抛物线形拱桥,正常水位时,桥下水面宽度为20m,拱顶距离水面4m(1)在如图所示的直角坐标系中,求出该抛物线的表达式;(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d表示为k的函数表达式;(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下的顺利航行五、课后练习 作业: 小结:教后记:2.4 二次函数的图象(第一课时)学习目标:1会用描点法画出二次函数 与 的图象;2能结合图象确定抛物线 与 的对称轴与顶点坐标;3通过比较抛物线 与 同 的相互关系,培养观察、分析、总结的能力;学习重点:画出形如 与形如 的二次函数的图象,能指出上述函数图象的开口方向,对称轴,顶点坐标.学习难点:理解函数 、 与 及其图象间的相互关系学习方法:探索研究法。学习过程:一、复习引入提问:1什么是二次函数?2我们已研究过了什么样的二次函数?3形如 的二次函数的开口方向,对称轴,顶点坐标各是什么?二、新课复习提问:用描点法画出函数 的图象,并根据图象指出:抛物线 的开口方向,对称轴与顶点坐标.例1 在同一平面直角坐标系画出函数 、 、 的图象.由图象思考下列问题:(1)抛物线 的开口方向,对称轴与顶点坐标是什么?(2)抛物线 的开口方向,对称轴与顶点坐标是什么?(3)抛物线 , 与 的开口方向,对称轴,顶点坐标有何异同?(4)抛物线 与 同有什么关系?继续回答:抛物线的形状相同具体是指什么?根据你所学过的知识能否回答:为何这三条抛物线的开口方向和开口大小都相同?这三条抛物线的位置有何不同?它们之间可有什么关系?抛物线 是由抛物线 沿y轴怎样移动了几个单位得到的?抛物线 呢?你认为是什么决定了会这样平移?例2在同一平面直角坐标系内画出 与 的图象三、本节小结本节课学习了二次函数 与 的图象的画法,主要内容如下。填写下表: 表一:抛物线开口方向对称轴顶点坐标 表二:抛物线开口方向对称轴顶点坐标 作业: 教后记:2.4 二次函数的图象(第二课时)学习目标:1会用描点法画出二次函数 的图像;2知道抛物线 的对称轴与顶点坐标;学习重点:会画形如 的二次函数的图像,并能指出图像的开口方向、对称轴及顶点坐标。学习难点:确定形如 的二次函数的顶点坐标和对称轴。学习方法:探索研究法。学习过程:1、请你在同一直角坐标系内,画出函数 的图像,并指出它们的开口方向,对称轴及顶点坐标2、你能否在这个直角坐标系中,再画出函数 的图像?3、你能否指出抛物线 的开口方向,对称轴,顶点坐标?将在上面练习中三条抛物线的性质填入所列的有中,如下表:抛物线开口方向对称轴顶点坐标4、我们已知抛物线的开口方向是由二次函数 中的a的值决定的,你能通过上表中的特征,试着总结出抛物线的对称轴和顶点坐标是由什么决定的吗?5、抛物线 有什么关系?6、它们的位置有什么关系?抛物线 是由抛物线 怎样移动得到的?抛物线 是由抛物线 怎样移动得到的?抛物线 是由抛物线 怎样移动得到的?抛物线 是由抛物线 怎样移动得到的?抛物线 是由抛物线 怎样移动得到的?总结、扩展一般的二次函数,都可以变形成 的形式,其中:1a能决定什么?怎样决定的?2它的对称轴是什么?顶点坐标是什么?课后练习: 作业: 小结:教后记:2.4 用三种方式表示二次函数学习目标:经历三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系和各自不同点;掌握变量之间的二次函数关系,解决二次函数所表示的问题;掌握根据二次函数不同的表达方式,从不同的侧面对函数性质进行研究学习重点:能够根据二次函数的不同表示方式,从不同的侧面对函数进行研究函数的综合题目,往往是三种方式的综合应用,由三种不同方式,都能把握函数性质,才会正确解题学习难点:用三种方式表示二次函数的实际问题时,忽略自变量的取值范围是常见的错误学习方法:讨论式学习法。学习过程:一、做一做:已知矩形周长20cm,并设它的一边长为xcm,面积为ycm2,y随x的而变化的规律是什么?你能分别用函数表达式,表格和图象表示出来吗?比较三种表示方式,你能得出什么结论?与同伴交流.二、试一试:两个数相差2,设其中较大的一个数为x,那么它们的积y是如何随x的变化而变化的? ?用你能分别用函数表达式,表格和图象表示这种变化吗?三、积累:表示方法优点缺点解析法表格法图像法三者关系表示方法优点缺点解析法表格法图像法三者关系四、例题:【例1】已知函数y=x2bx1的图象经过点(3,2)(1)求这个函数的表达式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x0时,求使y2的x的取值范围【例2】 一次函数y=2x3,与二次函数y=ax2bxc的图象交于A(m,5)和B(3,n)两点,且当x=3时,抛物线取得最值为9(1)求二次函数的表达式;(2)在同一坐标系中画出两个函数的图象;(3)从图象上观察,x为何值时,一次函数与二次函数的值都随x的增大而增大(4)当x为何值时,一次函数值大于二次函数值?【例3】 行驶中的汽车,在刹车后由于惯性的作用,还要继续向前滑动一段距离才停止,这段距离称为“刹车距离”为了测定某种型号汽车的刹车性能(车速不超过130km/h),对这种汽车进行测试,测得数据如下表:刹车时车速(km/h)010203040506070刹车距离(m)0112439567596119(1)以车速为x轴,刹车距离为y轴,在下面的方格图中建立坐标系,描出这些数据所表示的点,并用平滑曲线连接这些点,得到函数的大致图象;(2)观察图象,估计该函数的类型,并确定一个满足这些数据的函数表达式;(3)该型号汽车在国道上发生了一次交通事故,现测得刹车距离为264m,问在事故发生时,汽车是超速行驶还是正常行驶,请说明理由课后练习: 作业: 小结:教后记:2.6 何时获得最大利润学习目标:体会二次函数是一类最优化问题的数学模型了解数学的应用价值,掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值学习重点:本节重点是应用二次函数解决实际问题中的最值应用二次函数解决实际问题,要能正确分析和把握实际问题的数量关系,从而得到函数关系,再求最值实际问题的最值,不仅可以帮助我们解决一些实际问题,也是中考中经常出现的一种题型学习难点:本节难点在于能正确理解题意,找准数量关系这就需要同学们在平时解答此类问题时,在平时生活中注意观察和积累,使自己具备丰富的生活和数学知识才会正确分析,正确解题学习方法:在教师的引导下自主学习。学习过程:一、有关利润问题:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?二、做一做:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.利用函数表达式描述橙子的总产量与增种橙子树的棵数之间的关系.利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.?增种多少棵橙子,可以使橙子的总产量在60400个以上?三、举例:【例1】某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价x元与日销售量y件之间有如下关系:x35911y181462(1)在所给的直角坐标系甲中:根据表中提供的数据描出实数对(x,y)的对应点;猜测并确定日销售量y件与日销售单价x元之间的函数表达式,并画出图象(2)设经营此商品的日销售利润(不考虑其他因素)为P元,根据日销售规律:试求出日销售利润P元与日销售单价x元之间的函数表达式,并求出日销售单价x为多少元时,才能获得最大日销售利润?试问日销售利润P是否存在最小值?若有,试求出;若无,请说明理由在给定的直角坐标系乙中,画出日销售利润P元与日销售单价x元之间的函数图象的简图,观察图象,写出x与P的取值范围【例2】某化工材料经销公司购进了一种化工原料共7000kg,购进价格为30元/kg,物价部门规定其销售单价不得高于70元/kg,也不得低于30元/kg市场调查发现,单价定为70元时,日均销售60kg;单价每降低1元,日均多售出2kg在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算)设销售单价为x元,日均获利为y元(1)求y关于x的二次函数表达式,并注明x的取值范围(2)将(1)中所求出的二次函数配方成y=a(x)2的形式,写出顶点坐标,在图所示的坐标系中画出草图观察图象,指出单价定为多少元时日均获利最多?是多少?(3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式,哪一种获总利较多?多多少?四、随堂练习:五、课后练习 作业: 小结:教后记:2.7 最大面积是多少学习目标:掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题学习重点:本节的重点是应用二次函数解决图形有关的最值问题,这是本书惟一的一种类型,也是二次函数综合题目中常见的一种类型在二次函数的应用中占有重要的地位,是经常考查的题型,根据图形中的线段之间的关系,与二次函数结合,可解决此类问题学习难点:由图中找到二次函数表达式是本节的难点,它常用的有三角形相似,对应线段成比例,面积公式等,应用这些等式往往可以找到二次函数的表达式学习方法:教师指导学生自学法。学习过程:一、例题及练习:例1、如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.(1).设矩形的一边AB=xcm,那么AD边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少? 练习例2、某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?练习:某建筑物窗户如图所示,它的上半部是半圆,下半部是矩形制造窗框的材料总长(图中所有黑线的长度和)为15m当x等于多少时,窗户透过的光线最多(结果精确到001m)?此时,窗户的面积是多少?二、课后练习: 作业: 小结:教后记:2.8 二次函数与一元二次方程学习目标:体会二次函数与方程之间的联系;掌握用图象法求方程的近似根;理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系,及何时方程有两个不等的实根,两个相等的实根和没有实根;理解一元二次方程的根就是二次函数y=h(h是实数)图象交点的横坐标学习重点:本节重点把握二次函数图象与x轴(或y=h)交点的个数与一元二次方程的根的关系掌握此点,关键是理解二次函数y=ax2bxc图象与x轴交点,即y=0,即ax2bxc=0,从而转化为方程的根,再应用根的判别式,求根公式判断,求解即可,二次函数图象与x轴的交点是二次函数的一个重要内容,在其考查中也有重要的地位学习难点:应用一元二次方程根的判别式,及求根公式,来对二次函数及其图象进行进一步的理解此点一定要结合二次函数的图象加以记忆学习方法:讨论探索法。学习过程:一、实例讲解:我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面以40m/s的速度竖直向上抛出起,小球的高度h(m)与运动时间t(s)的关系如图所示,那么(1).h和t的关系式是什么?(2).小球经过多少秒后落地?你有几种求解方法?与同伴进行交流. 二、议一议:在同一坐标系中画出二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象并回答下列问题:(1).每个图象与x轴有几个交点?(2).一元二次方程? x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?三、例题:【例1】已知二次函数y=kx27x7的图象与x轴有两个交点,则k的取值范围为【例2】抛物线y=ax2bxc与x轴交于点A(3,0),对称轴为x=1,顶点C到x轴的距离为2,求此抛物线表达式【例5】有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三点为顶点的三角形面积为3请写出满足上述全部特点的一个二次函数表达式四、随堂练习:五、课后练习: 作业: 小结:教后记:
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!