2019年高考数学真题分类汇编 10.1 椭圆及其性质 文.doc

上传人:tian****1990 文档编号:3254130 上传时间:2019-12-10 格式:DOC 页数:3 大小:23.50KB
返回 下载 相关 举报
2019年高考数学真题分类汇编 10.1 椭圆及其性质 文.doc_第1页
第1页 / 共3页
2019年高考数学真题分类汇编 10.1 椭圆及其性质 文.doc_第2页
第2页 / 共3页
2019年高考数学真题分类汇编 10.1 椭圆及其性质 文.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述
2019年高考数学真题分类汇编 10.1 椭圆及其性质 文考点一椭圆的定义和标准方程1.(xx大纲全国,9,5分)已知椭圆C:+=1(ab0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点.若AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1C.+=1 D.+=1答案A2.(xx四川,20,13分)已知椭圆C:+=1(ab0)的左焦点为F(-2,0),离心率为.(1)求椭圆C的标准方程;(2)设O为坐标原点,T为直线x=-3上一点,过F作TF的垂线交椭圆于P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.解析(1)由已知可得,=,c=2,所以a=.又由a2=b2+c2,解得b=,所以椭圆C的标准方程是+=1.(2)设T点的坐标为(-3,m),则直线TF的斜率kTF=-m.当m0时,直线PQ的斜率kPQ=,直线PQ的方程是x=my-2.当m=0时,直线PQ的方程是x=-2,也符合x=my-2的形式.设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得消去x,得(m2+3)y2-4my-2=0,其判别式=16m2+8(m2+3)0,所以y1+y2=,y1y2=,x1+x2=m(y1+y2)-4=.因为四边形OPTQ是平行四边形,所以=,即(x1,y1)=(-3-x2,m-y2).所以解得m=1.此时,S四边形OPTQ=2SOPQ=2|OF|y1-y2|=2=2.3.(xx安徽,21,13分)设F1、F2分别是椭圆E:+=1(ab0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|.(1)若|AB|=4,ABF2的周长为16,求|AF2|;(2)若cosAF2B=,求椭圆E的离心率.解析(1)由|AF1|=3|F1B|,|AB|=4,得|AF1|=3,|F1B|=1.因为ABF2的周长为16,所以由椭圆定义可得4a=16,|AF1|+|AF2|=2a=8.故|AF2|=2a-|AF1|=8-3=5.(2)设|F1B|=k,则k0且|AF1|=3k,|AB|=4k.由椭圆定义可得|AF2|=2a-3k,|BF2|=2a-k.在ABF2中,由余弦定理可得|AB|2=|AF2|2+|BF2|2-2|AF2|BF2|cosAF2B,即(4k)2=(2a-3k)2+(2a-k)2-(2a-3k)(2a-k).化简可得(a+k)(a-3k)=0,而a+k0,故a=3k.于是有|AF2|=3k=|AF1|,|BF2|=5k.因此|BF2|2=|F2A|2+|AB|2,可得F1AF2A,AF1F2为等腰直角三角形.从而c=a,所以椭圆E的离心率e=.4.(xx广东,20,14分)已知椭圆C:+=1(ab0)的一个焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.解析(1)由题意得c=,e=,a=3,b=2,椭圆C的标准方程为+=1.(2)当过P点的两条切线的斜率均存在时,不妨设为k1、k2,则过P点的切线方程可设为y-y0=k(x-x0)y=kx+y0-kx0,由消去y,有(4+9k2)x2+18k(y0-kx0)x+9(y0-kx0)2-4=0,=18k(y0-kx0)2-4(4+9k2)9(y0-kx0)2-4=0,整理得(9-)k2+2x0y0k-+4=0,k1k2=(x03),由已知得k1k2=-1,=-1,+=13,即此时点P的轨迹方程为+=13.当两条切线中有一条垂直于x轴时,此时两条切线方程应分别为x=3,y=2或x=-3,y=2或x=3,y=-2或x=-3,y=-2,P点坐标为(3,2)或(-3,2)或(3,-2)或(-3,-2),均满足方程+=13(x03).综上所述,所求P点的轨迹方程为+=13.考点二椭圆的性质5.(xx江西,14,5分)设椭圆C:+=1(ab0)的左,右焦点为F1,F2,过F2作x轴的垂线与C相交于A,B两点,F1B与y轴相交于点D,若ADF1B,则椭圆C的离心率等于.答案6.(xx辽宁,15,5分)已知椭圆C:+=1,点M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=.答案127.(xx天津,18,13分)设椭圆+=1(ab0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过点F2的直线l与该圆相切于点M,|MF2|=2.求椭圆的方程.解析(1)设椭圆右焦点F2的坐标为(c,0).由|AB|=|F1F2|,可得a2+b2=3c2,又b2=a2-c2,则=.所以,椭圆的离心率e=.(2)由(1)知a2=2c2,b2=c2.故椭圆方程为+=1.设P(x0,y0).由F1(-c,0),B(0,c),有=(x0+c,y0),=(c,c).由已知,有=0,即(x0+c)c+y0c=0.又c0,故有x0+y0+c=0.因为点P在椭圆上,故+=1.由和可得3+4cx0=0.而点P不是椭圆的顶点,故x0=-c,代入得y0=,即点P的坐标为.设圆的圆心为T(x1,y1),则x1=-c,y1=c,进而圆的半径r=c.由已知,有|TF2|2=|MF2|2+r2,又|MF2|=2,故有+=8+c2,解得c2=3.所以,所求椭圆的方程为+=1.8.(xx课标,20,12分)设F1,F2分别是椭圆C:+=1(ab0)的左,右焦点,M是C上一点且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.解析(1)根据c=及题设知M,2b2=3ac.将b2=a2-c2代入2b2=3ac,解得=或=-2(舍去).故C的离心率为.(2)由题意,知原点O为F1F2的中点,MF2y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故=4,即b2=4a,由|MN|=5|F1N|得|DF1|=2|F1N|.设N(x1,y1),由题意知y10,则即代入C的方程,得+=1.将及c=代入得+=1.解得a=7,b2=4a=28.故a=7,b=2.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!