2019年高考数学二轮复习 专题训练三 第3讲 平面向量 理.doc

上传人:tian****1990 文档编号:3247624 上传时间:2019-12-10 格式:DOC 页数:16 大小:328KB
返回 下载 相关 举报
2019年高考数学二轮复习 专题训练三 第3讲 平面向量 理.doc_第1页
第1页 / 共16页
2019年高考数学二轮复习 专题训练三 第3讲 平面向量 理.doc_第2页
第2页 / 共16页
2019年高考数学二轮复习 专题训练三 第3讲 平面向量 理.doc_第3页
第3页 / 共16页
点击查看更多>>
资源描述
2019年高考数学二轮复习 专题训练三 第3讲 平面向量 理考情解读1.平面向量基本定理和向量共线定理是向量运算和应用的基础,高考中常以小题形式进行考查.2.平面向量的线性运算和数量积是高考的热点,有时和三角函数相结合,凸显向量的工具性,考查处理问题的能力1平面向量中的五个基本概念(1)零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0.(2)长度等于1个单位长度的向量叫单位向量,a的单位向量为.(3)方向相同或相反的向量叫共线向量(平行向量)(4)如果直线l的斜率为k,则a(1,k)是直线l的一个方向向量(5)向量的投影:|b|cosa,b叫做向量b在向量a方向上的投影2平面向量的两个重要定理(1)向量共线定理:向量a(a0)与b共线当且仅当存在唯一一个实数,使ba.(2)平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数1,2,使a1e12e2,其中e1,e2是一组基底3平面向量的两个充要条件若两个非零向量a(x1,y1),b(x2,y2),则(1)ababx1y2x2y10.(2)abab0x1x2y1y20.4平面向量的三个性质(1)若a(x,y),则|a|.(2)若A(x1,y1),B(x2,y2),则|.(3)若a(x1,y1),b(x2,y2),为a与b的夹角,则cos .热点一平面向量的概念及线性运算例1(1)(xx福建)在下列向量组中,可以把向量a(3,2)表示出来的是()Ae1(0,0),e2(1,2)Be1(1,2),e2(5,2)Ce1(3,5),e2(6,10)De1(2,3),e2(2,3)(2)如图所示,A,B,C是圆O上的三点,线段CO的延长线与线段BA的延长线交于圆O外的点D,若mn,则mn的取值范围是()A(0,1)B(1,)C(,1)D(1,0)思维启迪(1)根据平面向量基本定理解题(2)构造三点共线图形,得到平面向量的三点共线结论,将此结论与mn对应答案(1)B(2)D解析(1)由题意知,A选项中e10,C、D选项中两向量均共线,都不符合基底条件,故选B(事实上,a(3,2)2e1e2)(2)依题意,由点D是圆O外一点,可设(1),则(1).又C,O,D三点共线,令(1),则(1,1),所以m,n.故mn(1,0)故选D.思维升华对于平面向量的线性运算问题,要注意其与数的运算法则的共性与不同,两者不能混淆如向量的加法与减法要注意向量的起点和终点的确定,灵活利用三角形法则、平行四边形法则同时,要抓住两条主线:一是基于“形”,通过作出向量,结合图形分析;二是基于“数”,借助坐标运算来实现(1)(xx陕西)设0,向量a(sin 2,cos ),b(cos ,1),若ab,则tan _.(2)如图,在ABC中,AFAB,D为BC的中点,AD与CF交于点E.若a,b,且xayb,则xy_.答案(1)(2)解析(1)因为ab,所以sin 2cos2,2sin cos cos2.因为00,得2sin cos ,tan .(2)如图,设FB的中点为M,连接MD.因为D为BC的中点,M为FB的中点,所以MDCF.因为AFAB,所以F为AM的中点,E为AD的中点方法一因为a,b,D为BC的中点,所以(ab)所以(ab)所以b(ab)ab.所以x,y,所以xy.方法二易得EFMD,MDCF,所以EFCF,所以CECF.因为ba,所以(ba)ab.所以x,y,则xy.热点二平面向量的数量积例2(1)如图,BC、DE是半径为1的圆O的两条直径,2,则等于()A BC D(2)(xx重庆)在平面上,|1,.若|,则|的取值范围是()A. B.C. D.思维启迪(1)图O的半径为1,可对题中向量进行转化,;(2)利用|,寻找,的关系答案(1)B(2)D解析(1)2,圆O的半径为1,|,()()2()()201.(2),()()20,2.,.|1,21122()222(2)22,|,0|2,022,22,即|.思维升华(1)数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义;(2)可以利用数量积求向量的模和夹角,向量要分解成题中模和夹角已知的向量进行计算(1)(xx江苏)如图,在平行四边形ABCD中,已知AB8,AD5,3,2,则的值是_(2)已知点G是ABC的重心,若A120,2,则|的最小值是_答案(1)22(2)解析(1)由3,得,.因为2,所以()()2,即222.又因为225,264,所以22.(2)在ABC中,延长AG交BC于D,点G是ABC的重心,AD是BC边上的中线,且AGAD,|cos 1202,|4,2,(),2()22222|2(2),2,|,|的最小值是.热点三平面向量与三角函数的综合例3已知向量a(cos ,sin ),b(cos x,sin x),c(sin x2sin ,cos x2cos ),其中0x.(1)若,求函数f(x)bc的最小值及相应x的值;(2)若a与b的夹角为,且ac,求tan 2的值思维启迪(1)应用向量的数量积公式可得f(x)的三角函数式,然后利用换元法将三角函数式转化为二次函数式,由此可解得函数的最小值及对应的x值(2)由夹角公式及ac可得关于角的三角函数式,通过三角恒等变换可得结果解(1)b(cos x,sin x),c(sin x2sin ,cos x2cos ),f(x)bccos xsin x2cos xsin sin xcos x2sin xcos 2sin xcos x(sin xcos x)令tsin xcos x,则2sin xcos xt21,且1t.则yt2t12,1t,t时,ymin,此时sin xcos x,即sin,x,x,x,x.函数f(x)的最小值为,相应x的值为.(2)a与b的夹角为,cos cos cos xsin sin xcos(x)0x,0x0,|0,|0,cos A0,cos A ,|810,SABC|AB|AC|sin A103,即ABC的面积为3.三、解答题11.如图,在平面直角坐标系xOy中,点A在x轴正半轴上,直线AB的倾斜角为,|OB|2,设AOB,.(1)用表示点B的坐标及|OA|;(2)若tan ,求的值解(1)由题意,可得点B的坐标为(2cos ,2sin )在ABO中,|OB|2,BAO,B.由正弦定理,得,即|OA|2sin.(2)由(1),得|cos 4sincos .因为tan ,所以sin ,cos .又sinsin cos cos sin ,故4.12已知ABC中,角A,B,C的对边分别为a,b,c,若向量m(cos B,2cos21)与向量n(2ab,c)共线(1)求角C的大小;(2)若c2,SABC2,求a,b的值解(1)m(cos B,cos C),mn,ccos B(2ab)cos C,sin Ccos B(2sin Asin B)cos C,sin A2sin Acos C,cos C,C(0,),C.(2)c2a2b22abcos C,a2b2ab12,SABCabsin C2,ab8,由得或.13在ABC中,AC10,过顶点C作AB的垂线,垂足为D,AD5,且满足.(1)求|;(2)存在实数t1,使得向量xt,yt,令kxy,求k的最小值解(1)由,且A,B,D三点共线,可知|.又AD5,所以DB11.在RtADC中,CD2AC2AD275,在RtBDC中,BC2DB2CD2196,所以BC14.所以|14.(2)由(1),知|16,|10,|14.由余弦定理,得cos A.由xt,yt,知kxy(t)(t)t|2(t21)t|2256t(t21)1610100t80t2356t80.由二次函数的图象,可知该函数在1,)上单调递增,所以当t1时,k取得最小值516.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!