2019-2020年高考数学5年真题备考题库 第八章 第7节 抛物线 理(含解析).doc

上传人:xt****7 文档编号:3238595 上传时间:2019-12-09 格式:DOC 页数:9 大小:91.50KB
返回 下载 相关 举报
2019-2020年高考数学5年真题备考题库 第八章 第7节 抛物线 理(含解析).doc_第1页
第1页 / 共9页
2019-2020年高考数学5年真题备考题库 第八章 第7节 抛物线 理(含解析).doc_第2页
第2页 / 共9页
2019-2020年高考数学5年真题备考题库 第八章 第7节 抛物线 理(含解析).doc_第3页
第3页 / 共9页
点击查看更多>>
资源描述
2019-2020年高考数学5年真题备考题库 第八章 第7节 抛物线 理(含解析)1(xx湖南,5分)如图,正方形ABCD和正方形DEFG的边长分别为a,b(a0)经过C,F两点,则_.解析:由正方形的定义可知BCCD,结合抛物线的定义得点D为抛物线的焦点,所以|AD|pa,D,F,将点F的坐标代入抛物线的方程得b22pa22ab,变形得210,解得1或1(舍去),所以1.答案:12(xx新课标全国,5分)已知抛物线C:y28x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若4,则|QF|()A. B.C3 D2解析:过点Q作QQl交l于点Q,因为4,所以|PQ|PF|34,又焦点F到准线l的距离为4,所以|QF|QQ|3.故选C.答案:C3(xx新课标全国,5分)设F为抛物线C:y23x的焦点,过F且倾斜角为30的直线交C于A,B两点,O为坐标原点,则OAB的面积为()A. B.C. D.解析:易知抛物线中p,焦点F,直线AB的斜率k,故直线AB的方程为y,代入抛物线方程y23x,整理得x2x0.设A(x1,y1),B(x2,y2),则x1x2.由抛物线的定义可得弦长|AB|x1x2p12,结合图象可得O到直线AB的距离dsin 30,所以OAB的面积S|AB|d.答案:D4(xx辽宁,5分)已知点A(2,3)在抛物线C:y22px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A. B.C. D.解析:A(2,3)在抛物线y22px的准线上,2,p4,y28x,设直线AB的方程为xk(y3)2,将与y28x联立,即得y28ky24k160,则(8k)24(24k16)0,即2k23k20,解得k2或k(舍去),将k2代入解得,即B(8,8),又F(2,0),kBF,故选D.答案:D5(xx山东,14分)已知抛物线C:y22px(p0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|FD|.当点A的横坐标为3时,ADF为正三角形(1)求C的方程;(2)若直线l1l,且l1和C有且只有一个公共点E,证明直线AE过定点,并求出定点坐标;ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由解:由题意知F.设D(t,0)(t0),则FD的中点为.因为|FA|FD|,由抛物线的定义知3,解得t3p或t3(舍去)由3,解得p2.所以抛物线C的方程为y24x.(2)由(1)知F(1,0),设A(x0,y0)(x0y00),D(xD,0)(xD0),因为|FA|FD|,则|xD1|x01,由xD0得xDx02,故D(x02,0)故直线AB的斜率kAB.因为直线l1和直线AB平行,设直线l1的方程为yxb,代入抛物线方程得y2y0,由题意0,得b.设E(xE,yE),则yE,xE.当y4时,kAE,可得直线AE的方程为yy0(xx0),由y4x0,整理可得y(x1),直线AE恒过点F(1,0)当y4时,直线AE的方程为x1,过点F(1,0),所以直线AE过定点F(1,0)由知直线AE过焦点F(1,0),所以|AE|AF|FE|(x01)x02.设直线AE的方程为xmy1,因为点A(x0,y0)在直线AE上,故m.设B(x1,y1)直线AB的方程为yy0(xx0),由于y00,可得xy2x0,代入抛物线方程得y2y84x00.所以y0y1,可求得y1y0,x1x04.所以点B到直线AE的距离为d4.则ABE的面积S4x0216,当且仅当x0,即x01时等号成立所以ABE的面积的最小值为16.6(xx陕西,13分)如图,曲线C由上半椭圆C1:1(ab0,y0)和部分抛物线C2:yx21(y0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.(1)求a,b的值;(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若APAQ,求直线l的方程解:(1)在C1,C2的方程中,令y0,可得b1,且A(1,0),B(1,0)是上半椭圆C1的左、右顶点设C1的半焦距为c,由及a2c2b21得a2.a2,b1.(2)由(1)知,上半椭圆C1的方程为x21(y0)易知,直线l与x轴不重合也不垂直,设其方程为yk(x1)(k0),代入C1的方程,整理得(k24)x22k2xk240.(*)设点P的坐标为(xP,yP),直线l过点B,x1是方程(*)的一个根由根与系数的关系,得xP,从而yP,点P的坐标为.同理,由得点Q的坐标为(k1,k22k)(k,4),k(1,k2)APAQ,0,即k4(k2)0,k0,k4(k2)0,解得k.经检验,k符合题意,故直线l的方程为y(x1)7(xx新课标全国,5分)设抛物线C:y22px(p0)的焦点为F,点M在C上,|MF|5.若以MF为直径的圆过点(0,2),则C的方程为()Ay24x或y28xBy22x或y28x Cy24x或y216x Dy22x或y216x解析:本题考查抛物线与圆的有关知识,意在考查考生综合运用知识的能力由已知得抛物线的焦点F,设点A(0,2),抛物线上点M(x0,y0),则,.由已知得,0,即y8y0160,因而y04,M.由|MF|5得, 5,又p0,解得p2或p8,故选C.答案: C8(xx北京,5分)若抛物线y22px的焦点坐标为(1,0),则p_,准线方程为_解析:本题主要考查抛物线的方程及其简单的几何性质,意在考查考生的运算求解能力因为抛物线的焦点坐标为(1,0),所以1,p2,准线方程为x1.答案:2x19(xx江西,5分)抛物线x22py(p0)的焦点为F,其准线与双曲线1相交于A,B两点,若ABF为等边三角形,则p_.解析:本题考查抛物线、双曲线的标准方程及简单的几何性质,意在考查考生的数形结合思想以及转化与化归的能力由x22py(p0)得焦点F,准线l为y,所以可求得抛物线的准线与双曲线1的交点A,B,所以|AB| ,则|AF|AB| ,所以sin ,即,解得p6.答案:610(xx湖南,13分)过抛物线E:x22py(p0)的焦点F作斜率分别为k1,k2的两条不同直线l1,l2,且k1k22,l1与E相交于点A,B,l2与E相交于点C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.(1)若k10,k20,证明:0,k20,k1k2,所以0k1k221.故0,所以点M到直线l的距离d.故当k1时,d取最小值.由题设,解得p8.故所求的抛物线E的方程为x216y.11(xx山东,5分)已知双曲线C1:1(a0,b0)的离心率为2.若抛物线C2:x22py(p0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为()Ax2yBx2yCx28y Dx216y解析:双曲线的渐近线方程为yx,由于 2,所以,所以双曲线的渐近线方程为yx.抛物线的焦点坐标为(0,),所以2,所以p8,所以抛物线方程为x216y.答案:D12(2011新课标全国,5分)已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|12,P为C的准线上一点,则ABP的面积为()A18 B24C36 D48解析:设抛物线方程为y22px,则焦点坐标为(,0),将x代入y22px可得y2p2,|AB|12,即2p12,p6.点P在准线上,到AB的距离为p6,所以PAB的面积为61236.答案:C13(2011辽宁,5分)已知F是抛物线y2x的焦点,A,B是该抛物线上的两点,|AF|BF|3,则线段AB的中点到y轴的距离为()A. B1C. D.解析:根据抛物线定义与梯形中位线定理,得线段AB中点到y轴的距离为:(|AF|BF|).答案:C14(xx天津,5分)已知抛物线的参数方程为(t为参数),其中p0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|MF|,点M的横坐标是3,则p_.解析:由题意知,抛物线的普通方程为y22px(p0),焦点F(,0),准线x,设准线与x轴的交点为A.由抛物线定义可得|EM|MF|,所以MEF是正三角形,在直角三角形EFA中,|EF|2|FA|,即32p,得p2.答案:215.(xx陕西,5分)右图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米水位下降1米后,水面宽_米解析:以抛物线的顶点为原点,对称轴为y轴建立直角坐标系,设抛物线的方程为x22py,则点(2,2)在抛物线上,代入可得p1,所以x22y.当y3时,x26,所以水面宽为2.答案:216(xx浙江,4分)设抛物线y22px(p0)的焦点为F,点A(0,2)若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为_解析:抛物线的焦点F的坐标为(,0),线段FA的中点B的坐标为(,1),代入抛物线方程得12p,解得p,故点B的坐标为(,1),故点B到该抛物线准线的距离为.答案:17(2011新课标全国,12分)在平面直角坐标系xOy中,已知点A(0,1),B点在直线y3上,M点满足,M点的轨迹为曲线C.(1)求C的方程;(2)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值解:(1)设M(x,y),由已知得B(x,3),A(0,1)所以(x,1y),(0,3y),(x,2)再由题意可知()0,即(x,42y)(x,2)0所以曲线C的方程为yx22.(2)设P(x0,y0)为曲线C:yx22上一点,因为y x,所以l的斜率为x0.因此直线l的方程为yy0x0(xx0),即x0x2y2y0x0.则O点到l的距离d.又y0x2,所以d()2,当x00时取等号,所以O点到l距离的最小值为2.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!