资源描述
8.7立体几何的综合问题,第八章立体几何与空间向量,NEIRONGSUOYIN,内容索引,基础知识自主学习,题型分类深度剖析,课时作业,1,基础知识自主学习,PARTONE,知识梳理,1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a,b是平面内两不共线向量,n为平面的法向量,则求法向量的方程组为,ZHISHISHULI,非零,2.空间中平行、垂直关系的证明方法,(2)利用直线的方向向量和平面的法向量的关系.3.求两条异面直线所成的角(1)用“平移法”作出异面直线所成角(或其补角).(2)用“向量法”求两直线的方向向量所成的锐角.,4.求直线与平面所成的角(1)按定义作出线面角(即找到斜线在平面内的射影)解三角形.(2)直线与平面所成角的求法设直线l的方向向量为a,平面的法向量为n,直线l与平面所成的角为,a与n的夹角为,则sin|cos|_.,5.求二面角的大小(1)如图,AB,CD分别是二面角l的两个面内与棱l垂直的直线,则二面角的大小_.,(2)如图,n1,n2分别是二面角l的两个半平面,的法向量,则二面角的大小满足|cos|_,二面角的平面角大小是向量n1与n2的夹角(或其补角).,|cosn1,n2|,(6)若二面角a的两个半平面,的法向量n1,n2所成角为,则二面角a的大小是.(),基础自测,JICHUZICE,题组一思考辨析1.判断下列结论是否正确(请在括号中打“”或“”)(1)平面的单位法向量是唯一确定的.()(2)若两平面的法向量平行,则两平面平行.()(3)若两直线的方向向量不平行,则两直线不平行.()(4)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.(),1,2,3,4,5,6,1,2,3,4,5,6,题组二教材改编2.P104T2设u,v分别是平面,的法向量,u(2,2,5),当v(3,2,2)时,与的位置关系为_;当v(4,4,10)时,与的位置关系为_.,解析当v(3,2,2)时,uv(2,2,5)(3,2,2)0得.当v(4,4,10)时,v2u得.,1,2,3,4,5,6,3.P111T3如图所示,在正方体ABCDA1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的位置关系是_.,垂直,1,2,3,4,5,6,ON与AM垂直.,1,2,3,4,5,6,4.P104T2已知两平面的法向量分别为m(0,1,0),n(0,1,1),则两平面所成的二面角为_.,两平面所成二面角为45或18045135.,45或135,1,2,3,4,5,6,题组三易错自纠5.直线l的方向向量a(1,3,5),平面的法向量n(1,3,5),则有A.lB.lC.l与斜交D.l或l,解析由an知,na,则有l,故选B.,090,30.,30,1,2,3,4,5,6,2,题型分类深度剖析,PARTTWO,题型一证明平行或垂直问题,师生共研,A.相交B.平行C.垂直D.MN在平面BB1C1C内,解析以点C1为坐标原点,分别以C1B1,C1D1,C1C所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,,又C1D1平面BB1C1C,,又MN平面BB1C1C,所以MN平面BB1C1C.,2.(2010浙江)设l,m是两条不同的直线,是一个平面,则下列命题正确的是A.若lm,m,则lB.若l,lm,则mC.若l,m,则lmD.若l,m,则lm,解析对于A,由lm及m,可知l与的位置关系有平行、相交或在平面内三种,故A不正确.B正确.对于C,由l,m知,l与m的位置关系为平行或异面,故C不正确.对于D,由l,m知,l与m的位置关系为平行、异面或相交,故D不正确.,3.如图,在三棱锥PABC中,PA底面ABC,BAC90.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PAAC4,AB2.求证:MN平面BDE.,由题意,可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).,设n(x,y,z)为平面BDE的一个法向量,,因为MN平面BDE,所以MN平面BDE.,4.如图所示,已知四棱锥PABCD的底面是直角梯形,ABCBCD90,ABBCPBPC2CD,侧面PBC底面ABCD.证明:,(1)PABD;,证明取BC的中点O,连接PO,平面PBC底面ABCD,PBC为等边三角形,平面PBC底面ABCDBC,PO平面PBC,PO底面ABCD.以BC的中点O为坐标原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,OP所在直线为z轴,建立空间直角坐标系,如图所示.,(2)平面PAD平面PAB.,又PAPBP,PA,PB平面PAB,DM平面PAB.DM平面PAD,平面PAD平面PAB.,(1)证明平行或垂直问题要以两条直线的平行或垂直为基础,灵活转化线线、线面、面面的关系.(2)利用向量法证明平行、垂直问题时,要充分应用直线的方向向量和平面的法向量,将空间线面关系转化为向量的关系.,题型二空间角的计算,命题点1求直线和平面所成的角,(1)求AC的长;,多维探究,AD2AB2BD2,即ABBD.又平面ABD平面CBD,平面ABD平面CBDBD,AB平面ABD,AB平面CBD,ABBC,,(2)点E是线段AD的中点,求直线BE与平面ACD所成角的正弦值.,解方法一由(1)可知AB平面CBD,如图,过点B作BGDC的延长线于点G,连接AG,则有CD平面ABG,平面AGD平面ABG,过点B作BHAG于点H,平面AGD平面ABGAG,BH平面AGD,连接HE,则BEH为直线BE与平面ACD所成的角.,方法二在平面BCD上作BFBC,分别以B为原点,BC,BF,BA所在直线为x轴,y轴,z轴建立如图所示的空间直角坐标系,,设平面ACD的法向量为n(x,y,z),,设直线BE与平面ACD所成的角为,,命题点2求二面角例2(2018浙江名校(诸暨中学)交流卷四)如图,已知ABC为等边三角形,M为AB的中点,AA1,BB1分别垂直平面ABC于点A,B,AA1AB,BB1MNA1B1,垂足为N.,(1)求证:CNA1B1;,证明因为AA1,BB1分别垂直平面ABC于点A,B,所以平面AA1B1B平面ABC,又M为AB的中点,所以CMAB,于是CM平面A1ABB1,所以CMA1B1.又因为MNA1B1,CMMNM,所以A1B1平面CMN,又CN平面CMN,所以A1B1CN.,(2)求平面ABC与平面A1B1C所成的锐二面角的正切值.,解方法一如图,延长AB,A1B1相交于点D,连接CD,则CD为所求二面角的棱.,于是BDBCBA,于是ACD90,即CDCA.又因为CDAA1,CAAA1A,所以CD平面AA1C,所以CDCA1.于是A1CA即为所求二面角的平面角.在RtA1AC中,AA1ABAC,所以A1CA45,所以tanA1CA1.综上,平面ABC与平面A1B1C所成的锐二面角的正切值为1.,方法二如图,以M为原点,MA为x轴,MC为y轴建立空间直角坐标系,设AB2.,设平面A1B1C的法向量为n1(x,y,z).,设所求二面角的大小为,又平面ABC的一个法向量为n2(0,0,1).,(1)利用定义法计算空间角的三步曲:一作二证三计算.(2)利用向量法求角时,可利用基底法或建立空间直角坐标系,要注意两个向量的夹角和所求角的关系.,(1)证明:AEMB;,证明方法一在梯形ABCD中,连接BD交AE于点N,,BC2BD2CD2,故BCBD.又BCAE,AEBD,从而AEBN,AEMN,且BNMNN,AE平面MNB,又MB平面MNB,AEMB.,得ME2CE2MC2,故CEME.又CEBE,且MEBEE,CE平面BEM.MB平面BEM,CEMB,又ABCE,ABMB.,又ABBEB,MB平面ABE,又AE平面ABE,AEMB.,(2)求直线CM与平面AME所成角的正弦值.,解方法一设直线MC与平面AME所成角为,,AEBC,点C到平面AME的距离即为点B到平面AME的距离.,方法二MB平面ABCE,建立空间直角坐标系如图所示,,设平面AME的法向量为m(x,y,z),,设直线CM与平面AME所成角为,,思维点拨本题主要考查线线平行的证明,线面角的正弦值的求法以及空间中线线、线面、面面间的位置关系等,意在考查考生的空间想象能力、推理论证能力、运算求解能力,考查的数学核心素养是直观想象、逻辑推理、数学运算.,例(15分)如图,在四棱锥PABCD中,底面ABCD是边长为4的正方形,侧面PCD为正三角形且二面角PCDA的大小为60.(1)设侧面PAD与侧面PBC的交线为m,求证:mBC;(2)设直线AB与侧面PBC所成的角为,求sin的值.,答题模板,DATIMUBAN,利用空间向量求空间角,规范解答(1)证明因为BCAD,BC平面PAD,AD平面PAD,所以BC侧面PAD.又侧面PAD侧面PBCm,所以mBC.5分(2)解方法一取CD的中点M,AB的中点N,连接PM,MN,则PMCD,MNCD.所以PMN是侧面PCD与底面ABCD所成二面角的平面角,从而PMN60.作POMN于点O,则PO底面ABCD.,以O为原点,ON所在直线为x轴,OP所在直线为z轴,建立如图所示的空间直角坐标系,,设n(x,y,z)是平面PBC的法向量,,取n(0,3,2).,方法二如图,取CD的中点M,AB的中点N,连接PM,MN,则PMCD,MNCD,所以PMN是侧面PCD与底面ABCD所成二面角的平面角,从而PMN60.作POMN于点O,则PO底面ABCD.,作OEAB交BC于点E,连接PE.因为BCPO,BCOE,OPOEO,所以BC平面POE.从而平面POE平面PBC.,所以PEO就是直线OE即直线AB与平面PBC所成的角.所以PEO.,答题模板利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标;第二步:求向量(直线的方向向量、平面的法向量)坐标;第三步:计算向量的夹角(或函数值),并转化为所求角.,3,课时作业,PARTTHREE,基础保分练,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1.若直线l的方向向量为a(1,0,2),平面的法向量为n(2,1,1),则A.lB.lC.l或lD.l与斜交,解析a(1,0,2),n(2,1,1),an0,即an,l或l.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,2.如图,在空间直角坐标系中,有直三棱柱ABCA1B1C1,CACC12CB,则直线BC1与直线AB1所成角的余弦值为,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析设CA2,则C(0,0,0),A(2,0,0),B(0,0,1),C1(0,2,0),B1(0,2,1),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,3.在正方体ABCDA1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析以A为原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系Axyz,设棱长为1,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,n1(1,2,2).平面ABCD的一个法向量为n2(0,0,1),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,4.(2018金华模拟)如图,平面,l,A,B,A,B到l的距离分别是a和b,AB与,所成的角分别是和,线段AB在,内的射影长分别是m和n,若ab,则A.,mnB.,mn,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,5.已知正三棱柱ABCA1B1C1,ABAA12,则异面直线AB1与CA1所成角的余弦值为,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析以A为原点,在平面ABC内过A作AC的垂线为x轴,以AC所在直线为y轴,以AA1所在直线为z轴,建立空间直角坐标系,,设异面直线AB1和A1C所成的角为,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,6.(2018宁波十校高三适应性考试)如图所示,在正方体ABCDA1B1C1D1中,点P是棱AB上的动点(P点可以运动到端点A和B),设在运动过程中,平面PDB1与平面ADD1A1所成的最小角为,则cos等于,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析以点D为坐标原点,DA,DC,DD1所在的直线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为1,APa(0a1),则易得D(0,0,0),P(1,a,0),B1(1,1,1),,设平面PDB1的法向量为n(x,y,z),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,令xa,得平面PDB1的一个法向量为n(a,1,a1),易得平面ADD1A1的一个法向量为m(0,1,0),由图易得平面PDB1与平面ADD1A1所成的二面角为锐角,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,7.在三棱锥PABC中,PA平面ABC,BAC90,D,E,F分别是棱AB,BC,CP的中点,ABAC1,PA2,则直线PA与平面DEF所成角的正弦值为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析以A为原点,AB,AC,AP所在直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系,由ABAC1,PA2,,设平面DEF的法向量为n(x,y,z),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,取z1,则n(2,0,1),设直线PA与平面DEF所成的角为,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,8.如图,在正方形ABCD中,EFAB,若沿EF将正方形折成一个二面角后,AEEDAD则AF与CE所成角的余弦值为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,AEED,即AE,DE,EF两两垂直,所以建立如图所示的空间直角坐标系,设ABEFCD2,则E(0,0,0),A(1,0,0),F(0,2,0),C(0,2,1),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,9.如图所示,在三棱柱ABCA1B1C1中,AA1底面ABC,ABBCAA1,ABC90,点E,F分别是棱AB,BB1的中点,则直线EF和BC1所成的角是_.,60,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析以B点为坐标原点,以BC所在直线为x轴,BA所在直线为y轴,BB1所在直线为z轴,建立空间直角坐标系.设ABBCAA12,则C1(2,0,2),E(0,1,0),F(0,0,1),,异面直线所成角的范围是(0,90,EF和BC1所成的角为60.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,10.已知点E,F分别在正方体ABCDA1B1C1D1的棱BB1,CC1上,且B1E2EB,CF2FC1,则平面AEF与平面ABC所成的锐二面角的正切值为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析方法一延长FE,CB相交于点G,连接AG,如图所示.设正方体的棱长为3,则GBBC3,作BHAG于点H,连接EH,则EHB为所求锐二面角的平面角.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,方法二如图,以点D为坐标原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系Dxyz,设DA1,,设平面AEF的法向量为n(x,y,z),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,令y1,z3,x1,则n(1,1,3),取平面ABC的法向量为m(0,0,1),设平面AEF与平面ABC所成的锐二面角为,,证明由题易知ADEABC60,ADCD,E是CD的中点,AECD.又ABCD,AEAB.PA平面ABCD,PAAE,又PAABA,AE平面PAB.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,11.(2018嘉兴基础测试)如图,在四棱锥PABCD中,底面ABCD为菱形,PA平面ABCD,PAAB2,E为CD的中点,ABC60.(1)求证:AE平面PAB;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,(2)求直线AE与平面PCD所成角的正弦值.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解方法一连接PE,过点A作AHPE于点H(图略).CDEA,CDPA,EAPAA,CD平面PAE,CDAH.又AHPE,CDPEE,CD,PE平面PCD,AH平面PCD.AEP为直线AE与平面PCD所成的角.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,方法二以A为坐标原点,AB,AE,AP所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系Axyz,,设平面PCD的法向量为n(x,y,z),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,设直线AE与平面PCD所成的角为,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,12.(2018浙江“七彩阳光”联盟联考)如图,四边形ABCD为正方形,四边形PDCE为直角梯形,PDCE,PDC90,平面ABCD平面PDCE,且PDAD2EC2.(1)若PE和DC的延长线交于点F,求证:BF平面PAC;,证明在梯形PDCE中,PD2EC,C为DF的中点,CFCDAB,又ABCF,四边形ABFC为平行四边形,BFAC,又AC平面PAC,BF平面PAC,BF平面PAC.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,(2)若Q为EC边上的动点,求直线BQ与平面PDB所成角的正弦值的最小值.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解方法一设点Q在平面PBD上的射影为O,连接OQ,OB(图略),则QBO为直线BQ与平面PDB所成的角.ECPD,EC平面PBD,EC平面PBD.四边形ABCD为正方形,ACBD,又平面ABCD平面PDCE,平面ABCD平面PDCECD,PDDC,PD平面PDCE,PD平面ABCD,PDAC,又BDPDD,AC平面PBD,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,EC平面PBD,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,方法二平面ABCD平面PDCE,平面ABCD平面PDCECD,PDDC,PD平面PDCE,PD平面ABCD,PDDA.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,设Q(0,2,t)(0t1),,技能提升练,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,13.(2019金华模拟)已知点P是正方体ABCDA1B1C1D1表面上一动点,且满足PA2PB,设PD1与平面ABCD所成的角为,则的最大值为,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析以B为坐标原点,BC,BA,BB1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,设正方体的棱长为2,P(x,y,z),则A(0,2,0),因为PA2PB,,即为如图的、,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,要使得PD1与底面ABCD所成的角最大,则PD1与底面ABCD的交点R到点D的距离最短,从而点P在上,且在QD上,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,14.(2018浙江名校联盟联考)在直三棱柱ABCA1B1C1中,ABACAA11,已知G和E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点),若GDEF,则线段DF的长度的取值范围为_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,令D(0,b,0),F(a,0,0),0a1,0b1,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形,拓展冲刺练,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析连接AC与BD交于点O,连接A1O,C1O,A1B,A1D,依题意得,ACBD,AA1BD,又ACAA1A,BD平面AA1C1C.BDA1O,BDC1O,故A1OC1为二面角A1BDC1的平面角.,由勾股定理的逆定理,知A1OC190,故平面A1BD平面C1BD.连接PO,若A1PC1为直角,即A1PPC1,又A1OPC1,A1PA1OA1,C1P平面POA1,则C1PPO,此时P在BDC1内的一段圆弧(该圆弧所在的圆的直径为C1O)上,符合题意;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,当P在OC1上时,A1PC1为钝角三角形;当P无限接近B或D时,A1PC1为锐角三角形;若A1PC1为等腰三角形,,当A1C1为等腰三角形A1PC1的底边时,点P与A1C1中点的连线必垂直于A1C1,此时,在BDC1内部不存在这样的点P.故选A.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,16.(2018杭州地区四校联考)如图,在四棱锥PABCD中,PA平面ABCD,PAAD2,BCCDAB1,ADBC.,(1)若M是PD的中点,证明:CM平面PAB.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,证明如图,取AP的中点F,连接MF,BF.,所以MFBC,MFBC,所以四边形MFBC是平行四边形,所以CMBF,又BF平面PAB,CM平面PAB,所以CM平面PAB.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解假设存在满足条件的点E.方法一如图,过点B作BH平面PCD,连接EH,则BEH即直线BE与平面PCD所成的角.,所以PC2CD2PD2,所以PCCD,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,因为VPBCDVBPCD,,所以PB2BD2PD2,所以PBBD,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,又BE2PB2PE22PBPEcosBPE,,所以当E是线段PD的中点或是线段PD的靠近点D的四等分点时,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,方法二建立如图所示的空间直角坐标系,其中O,G,N分别为AD,BC,PD的中点,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,设平面PCD的法向量为n(x,y,z),,设直线BE与平面PCD所成的角为,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,所以当点E是线段PD的中点或是线段PD的靠近点D的四等分点时,,
展开阅读全文