2019年高考数学真题分类汇编 14 推理与证明 理 .doc

上传人:tian****1990 文档编号:3197658 上传时间:2019-12-08 格式:DOC 页数:6 大小:35KB
返回 下载 相关 举报
2019年高考数学真题分类汇编 14 推理与证明 理 .doc_第1页
第1页 / 共6页
2019年高考数学真题分类汇编 14 推理与证明 理 .doc_第2页
第2页 / 共6页
2019年高考数学真题分类汇编 14 推理与证明 理 .doc_第3页
第3页 / 共6页
点击查看更多>>
资源描述
2019年高考数学真题分类汇编 14 推理与证明 理考点一合情推理与演绎推理1.(xx北京,8,5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人 B.3人 C.4人 D.5人答案B2.(xx课标,14,5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为.答案A3.(xx陕西,14,5分)观察分析下表中的数据:多面体面数(F)顶点数(V)棱数(E)三棱柱569五棱锥6610立方体6812猜想一般凸多面体中F,V,E所满足的等式是.答案F+V-E=24.(xx北京,20,13分)对于数对序列P:(a1,b1),(a2,b2),(an,bn),记T1(P)=a1+b1,Tk(P)=bk+maxTk-1(P),a1+a2+ak(2kn),其中maxTk-1(P),a1+a2+ak表示Tk-1(P)和a1+a2+ak两个数中最大的数.(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P)的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论)解析(1)T1(P)=2+5=7,T2(P)=1+maxT1(P),2+4=1+max7,6=8.(2)T2(P)=maxa+b+d,a+c+d,T2(P)=maxc+d+b,c+a+b.当m=a时,T2(P)=maxc+d+b,c+a+b=c+d+b.因为a+b+dc+b+d,且a+c+dc+b+d,所以T2(P)T2(P).当m=d时,T2(P)=maxc+d+b,c+a+b=c+a+b.因为a+b+dc+a+b,且a+c+dc+a+b,所以T2(P)T2(P).所以无论m=a还是m=d,T2(P)T2(P)都成立.(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小,T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.考点二直接证明与间接证明5.(xx山东,4,5分)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根答案A考点三数学归纳法6.(xx安徽,21,13分)设实数c0,整数p1,nN*.(1)证明:当x-1且x0时,(1+x)p1+px;(2)数列an满足a1,an+1=an+.证明:anan+1.解析(1)证明:用数学归纳法证明:当p=2时,(1+x)2=1+2x+x21+2x,原不等式成立.假设p=k(k2,kN*)时,不等式(1+x)k1+kx成立.当p=k+1时,(1+x)k+1=(1+x)(1+x)k(1+x)(1+kx)=1+(k+1)x+kx21+(k+1)x.所以p=k+1时,原不等式也成立.综合可得,当x-1,x0时,对一切整数p1,不等式(1+x)p1+px均成立.(2)证法一:先用数学归纳法证明an.当n=1时,由题设a1知an成立.假设n=k(k1,kN*)时,不等式ak成立.由an+1=an+易知an0,nN*.当n=k+1时,=+=1+.由ak0得-1-1+p=.因此c,即ak+1.所以n=k+1时,不等式an也成立.综合可得,对一切正整数n,不等式an均成立.再由=1+可得1,即an+1an+1,nN*.证法二:设f(x)=x+x1-p,x,则xpc,并且f (x)=+(1-p)x-p=0,x.由此可得, f(x)在,+)上单调递增.因而,当x时, f(x)f()=,当n=1时,由a10,即c可知a2=a1+=a1,从而a1a2.故当n=1时,不等式anan+1成立.假设n=k(k1,kN*)时,不等式akak+1成立,则当n=k+1时, f(ak)f(ak+1)f(),即有ak+1ak+2.所以n=k+1时,原不等式也成立.综合可得,对一切正整数n,不等式anan+1均成立.7.(xx陕西,21,14分)设函数f(x)=ln(1+x),g(x)=xf (x),x0,其中f (x)是f(x)的导函数.(1)令g1(x)=g(x),gn+1(x)=g(gn(x),nN+,求gn(x)的表达式;(2)若f(x)ag(x)恒成立,求实数a的取值范围;(3)设nN+,比较g(1)+g(2)+g(n)与n-f(n)的大小,并加以证明.解析由题设得,g(x)=(x0).(1)由已知,g1(x)=,g2(x)=g(g1(x)=,g3(x)=,可得gn(x)=.下面用数学归纳法证明.当n=1时,g1(x)=,结论成立.假设n=k时结论成立,即gk(x)=.那么,当n=k+1时,gk+1(x)=g(gk(x)=,即结论成立.由可知,结论对nN+成立.(2)已知f(x)ag(x)恒成立,即ln(1+x)恒成立.设(x)=ln(1+x)-(x0),即(x)=-=,当a1时,(x)0(仅当x=0,a=1时等号成立),(x)在0,+)上单调递增,又(0)=0,(x)0在0,+)上恒成立,a1时,ln(1+x)恒成立(仅当x=0时等号成立).当a1时,对x(0,a-1有(x)0,(x)在(0,a-1上单调递减,(a-1)1时,存在x0,使(x)n-ln(n+1).证明如下:证法一:上述不等式等价于+,x0.令x=,nN+,则ln.下面用数学归纳法证明.当n=1时,ln 2,结论成立.假设当n=k时结论成立,即+ln(k+1).那么,当n=k+1时,+ln(k+1)+ln(k+1)+ln=ln(k+2),即结论成立.由可知,结论对nN+成立.证法二:上述不等式等价于+,x0.令x=,nN+,则ln.故有ln 2-ln 1,ln 3-ln 2,ln(n+1)-ln n,上述各式相加可得ln(n+1)+.结论得证.证法三:如图,dx是由曲线y=,x=n及x轴所围成的曲边梯形的面积,而+是图中所示各矩形的面积和,+dx=dx=n-ln(n+1),结论得证.8.(xx江苏,23,10分)已知函数f0(x)=(x0),设fn(x)为fn-1(x)的导数,nN*.(1)求2f1+f2的值;(2)证明:对任意的nN*,等式=都成立.解析(1)由已知,得f1(x)=f 0(x)=-,于是f2(x)=f 1(x)=-=-+,所以f1=-, f2=-+.故2f1+f2=-1.(2)证明:由已知,得xf0(x)=sin x,等式两边分别对x求导,得f0(x)+xf 0(x)=cos x,即f0(x)+xf1(x)=cos x=sin,类似可得2f1(x)+xf2(x)=-sin x=sin(x+),3f2(x)+xf3(x)=-cos x=sin,4f3(x)+xf4(x)=sin x=sin(x+2).下面用数学归纳法证明等式nfn-1(x)+xfn(x)=sin对所有的nN*都成立.(i)当n=1时,由上可知等式成立.(ii)假设当n=k时等式成立,即kfk-1(x)+xfk(x)=sin.因为kfk-1(x)+xfk(x)=kf k-1(x)+fk(x)+xf k(x)=(k+1)fk(x)+xfk+1(x),=cos=sin,所以(k+1)fk(x)+xfk+1(x)=sin.因此当n=k+1时,等式也成立.综合(i),(ii)可知等式nfn-1(x)+xfn(x)=sin对所有的nN*都成立.令x=,可得nfn-1+fn=sin(nN*).所以=(nN*).9.(xx重庆,22,12分)设a1=1,an+1=+b(nN*).(1)若b=1,求a2,a3及数列an的通项公式;(2)若b=-1,问:是否存在实数c使得a2nca2n+1对所有nN*成立?证明你的结论.解析(1)解法一:a2=2,a3=+1.再由题设条件知(an+1-1)2=(an-1)2+1.从而(an-1)2是首项为0,公差为1的等差数列,故(an-1)2=n-1,即an=+1(nN*).解法二:a2=2,a3=+1,可写为a1=+1,a2=+1,a3=+1.因此猜想an=+1.下用数学归纳法证明上式:当n=1时结论显然成立.假设n=k时结论成立,即ak=+1,则ak+1=+1=+1=+1.这就是说,当n=k+1时结论成立.所以an=+1(nN*).(2)解法一:设f(x)=-1,则an+1=f(an).令c=f(c),即c=-1,解得c=.下用数学归纳法证明加强命题a2nca2n+11.当n=1时,a2=f(1)=0,a3=f(0)=-1,所以a2a31,结论成立.假设n=k时结论成立,即a2kca2k+1f(a2k+1)f(1)=a2,即1ca2k+2a2.再由f(x)在(-,1上为减函数得c=f(c)f(a2k+2)f(a2)=a31.故ca2k+31,因此a2(k+1)ca2(k+1)+11.这就是说,当n=k+1时结论成立.综上,符合条件的c存在,其中一个值为c=.解法二:设f(x)=-1,则an+1=f(an).先证:0an1(nN*).当n=1时,结论明显成立.假设n=k时结论成立,即0ak1.易知f(x)在(-,1上为减函数,从而0=f(1)f(ak)f(0)=-11.即0ak+11.这就是说,当n=k+1时结论成立.故成立.再证:a2na2n+1(nN*).当n=1时,a2=f(1)=0,a3=f(a2)=f(0)=-1,有a2a3,即n=1时成立.假设n=k时,结论成立,即a2kf(a2k+1)=a2k+2,a2(k+1)=f(a2k+1)f(a2k+2)=a2(k+1)+1.这就是说,当n=k+1时成立.所以对一切nN*成立.由得a2n-1,即(a2n+1)2-2a2n+2,因此a2nf(a2n+1),即a2n+1a2n+2,所以a2n+1-1,解得a2n+1.综上,由、知存在c=使a2nca2n+1对一切nN*成立.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!