资源描述
2019年高考数学真题分类汇编 8.4 直线、平面垂直的判定和性质 理考点垂直的判定与性质1.(xx广东,7,5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1l2,l2l3,l3l4,则下列结论一定正确的是()A.l1l4 B.l1l4C.l1与l4既不垂直也不平行 D.l1与l4的位置关系不确定答案D2.(xx课标,19,12分)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,ABB1C.(1)证明:AC=AB1;(2)若ACAB1,CBB1=60,AB=BC,求二面角A-A1B1-C1的余弦值.解析(1)连结BC1,交B1C于点O,连结AO.因为侧面BB1C1C为菱形,所以B1CBC1,且O为B1C及BC1的中点.又ABB1C,所以B1C平面ABO.由于AO平面ABO,故B1CAO.又B1O=CO,故AC=AB1.(2)因为ACAB1,且O为B1C的中点,所以AO=CO.又因为AB=BC,所以BOABOC.故OAOB,从而OA,OB,OB1两两互相垂直.以O为坐标原点,的方向为x轴正方向,|为单位长,建立如图所示的空间直角坐标系O-xyz.因为CBB1=60,所以CBB1为等边三角形,又AB=BC,则A,B(1,0,0),B1,C.=,=,=.设n=(x,y,z)是平面AA1B1的法向量,则即所以可取n=(1,).设m是平面A1B1C1的法向量,则同理可取m=(1,-,).则cos=.所以二面角A-A1B1-C1的余弦值为.3.(xx福建,17,13分)在平面四边形ABCD中,AB=BD=CD=1,ABBD,CDBD.将ABD沿BD折起,使得平面ABD平面BCD,如图.(1)求证:ABCD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.解析(1)证明:平面ABD平面BCD,平面ABD平面BCD=BD,AB平面ABD,ABBD,AB平面BCD.又CD平面BCD,ABCD.(2)过点B在平面BCD内作BEBD,如图.由(1)知AB平面BCD,BE平面BCD,BD平面BCD,ABBE,ABBD.以B为坐标原点,分别以,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系.依题意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),M,则=(1,1,0),=,=(0,1,-1).设平面MBC的法向量为n=(x0,y0,z0),则即取z0=1,得平面MBC的一个法向量为n=(1,-1,1).设直线AD与平面MBC所成角为,则sin =|cos|=,即直线AD与平面MBC所成角的正弦值为.4.(xx广东,18,13分)如图,四边形ABCD为正方形,PD平面ABCD,DPC=30,AFPC于点F,FECD,交PD于点E.(1)证明:CF平面ADF;(2)求二面角D-AF-E的余弦值.解析(1)证明:PD平面ABCD,PDAD,又CDAD,PDCD=D,AD平面PCD,ADPC,又AFPC,AFAD=A,PC平面ADF,即CF平面ADF.(2)解法一:设AB=1,则RtPDC中,CD=1,DPC=30,PC=2,PD=,由(1)知CFDF,DF=,CF=,又FECD,=,DE=,同理,EF=CD=,如图所示,以D为原点,建立空间直角坐标系,则A(0,0,1),E,F,P(,0,0),C(0,1,0).设m=(x,y,z)是平面AEF的法向量,则又令x=4,得z=,故m=(4,0,),由(1)知平面ADF的一个法向量为=(-,1,0),设二面角D-AF-E的平面角为,可知为锐角,cos =|cos|=,故二面角D-AF-E的余弦值为.解法二:设AB=1,CF平面ADF,CFDF.在CFD中,DF=,CDAD,CDPD,CD平面ADE.又EFCD,EF平面ADE.EFAE,在DEF中,DE=,EF=,在ADE中,AE=,在ADF中,AF=.由VA-DEF=SADEEF=SADFhE-ADF,解得hE-ADF=,设AEF的边AF上的高为h,由SAEF=EFAE=AFh,解得h=,设二面角D-AF-E的平面角为.则sin =,cos =.5.(xx辽宁,19,12分)如图,ABC和BCD所在平面互相垂直,且AB=BC=BD=2,ABC=DBC=120,E,F分别为AC,DC的中点.(1)求证:EFBC;(2)求二面角E-BF-C的正弦值.解析(1)证法一:过E作EOBC,垂足为O,连OF.图1由ABCDBC可证出EOCFOC.所以EOC=FOC=,即FOBC.又EOBC,因此BC面EFO.又EF面EFO,所以EFBC.证法二:由题意,以B为坐标原点,在平面DBC内过B作垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图2所示空间直角坐标系,易得B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0),因而E,F,所以,=,=(0,2,0),因此=0.从而,所以EFBC.图2(2)解法一:在图1中,过O作OGBF,垂足为G,连EG.由平面ABC平面BDC,从而EO面BDC,又OGBF,由三垂线定理知EGBF.因此EGO为二面角E-BF-C的平面角.在EOC中,EO=EC=BCcos 30=,由BGOBFC知,OG=FC=,因此tanEGO=2,从而sinEGO=,即二面角E-BF-C的正弦值为.解法二:在图2中,平面BFC的一个法向量为n1=(0,0,1).设平面BEF的法向量为n2=(x,y,z),又=,=,由得其中一个n2=(1,-,1).设二面角E-BF-C的大小为,且由题意知为锐角,则cos =|cos|=,因此sin =,即所求二面角的正弦值为.6.(xx湖南,19,12分)如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,ACBD=O,A1C1B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O底面ABCD;(2)若CBA=60,求二面角C1-OB1-D的余弦值.解析(1)证明:因为四边形ACC1A1为矩形,所以CC1AC.同理DD1BD,因为CC1DD1,所以CC1BD,而ACBD=O,因此CC1底面ABCD.由题设知,O1OC1C,故O1O底面ABCD,(2)解法一:如图,过O1作O1HOB1于H,连结HC1.由(1)知,O1O底面ABCD,所以O1O底面A1B1C1D1,于是O1OA1C1.又因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形,因此A1C1B1D1,从而A1C1平面BDD1B1,所以A1C1OB1,于是OB1平面O1HC1,进而OB1C1H,故C1HO1是二面角C1-OB1-D的平面角,不妨设AB=2,因为CBA=60,所以OB=,OC=1,OB1=.在RtOO1B1中,易知O1H=2,而O1C1=1,于是C1H=.故cosC1HO1=.即二面角C1-OB1-D的余弦值为.解法二:因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形ABCD是菱形,因此ACBD,又由(1)知O1O底面ABCD,从而OB、OC、OO1两两垂直.如图,以O为坐标原点,OB,OC,OO1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系O-xyz,不妨设AB=2,因为CBA=60,所以OB=,OC=1,于是相关各点的坐标为O(0,0,0),B1(,0,2),C1(0,1,2).易知,n1=(0,1,0)是平面BDD1B1的一个法向量.设n2=(x,y,z)是平面OB1C1的法向量,则即取z=-,则x=2,y=2,所以n2=(2,2,-),设二面角C1-OB1-D的大小为,易知是锐角,于是cos =|cos|=.故二面角C1-OB1-D的余弦值为.7.(xx江西,19,12分)如图,四棱锥P-ABCD中,ABCD为矩形,平面PAD平面ABCD.(1)求证:ABPD;(2)若BPC=90,PB=,PC=2,问AB为何值时,四棱锥P-ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.解析(1)证明:ABCD为矩形,故ABAD.又平面PAD平面ABCD,平面PAD平面ABCD=AD,所以AB平面PAD,故ABPD.(2)过P作AD的垂线,垂足为O,过O作BC的垂线,垂足为G,连结PG.故PO平面ABCD,BC平面POG,BCPG.在RtBPC中,PG=,GC=,BG=.设AB=m,则OP=,故四棱锥P-ABCD的体积V=m=.因为m=,故当m=,即AB=时,四棱锥P-ABCD的体积最大.此时,建立如图所示的坐标系,各点的坐标为O(0,0,0),B,C,D,P.故=,=(0,0),=.设平面BPC的法向量为n1=(x,y,1),则由n1,n1得解得x=1,y=0,n1=(1,0,1).同理可求出平面DPC的法向量为n2=.从而平面BPC与平面DPC夹角的余弦值为cos =.8.(xx浙江,20,15分)如图,在四棱锥A-BCDE中,平面ABC平面BCDE,CDE=BED=90,AB=CD=2,DE=BE=1,AC=.(1)证明:DE平面ACD;(2)求二面角B-AD-E的大小.解析(1)证明:在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2,得AB2=AC2+BC2,即ACBC,又平面ABC平面BCDE,从而AC平面BCDE,所以ACDE.又DEDC,从而DE平面ACD.(2)解法一:作BFAD,与AD交于点F,过点F作FGDE,与AE交于点G,连结BG,由(1)知DEAD,则FGAD.所以BFG是二面角B-AD-E的平面角.在直角梯形BCDE中,由CD2=BC2+BD2,得BDBC,又平面ABC平面BCDE,得BD平面ABC,从而BDAB.由于AC平面BCDE,得ACCD.在RtACD中,由DC=2,AC=,得AD=.在RtAED中,由ED=1,AD=,得AE=.在RtABD中,由BD=,AB=2,AD=,得BF=,AF=AD.从而GF=.在ABE,ABG中,利用余弦定理分别可得cosBAE=,BC=.在BFG中,cosBFG=.所以,BFG=,即二面角B-AD-E的大小是.解法二:以D为原点,分别以射线DE,DC为x轴,y轴的正半轴,建立空间直角坐标系D-xyz,如图所示.由题意知各点坐标如下:D(0,0,0),E(1,0,0),C(0,2,0),A(0,2,),B(1,1,0).设平面ADE的法向量为m=(x1,y1,z1),平面ABD的法向量为n=(x2,y2,z2),可算得=(0,-2,-),=(1,-2,-),=(1,1,0),由即可取m=(0,1,-).由即可取n=(1,-1,).于是|cos|=,由题意可知,所求二面角是锐角,故二面角B-AD-E的大小是.
展开阅读全文