资源描述
3.1 数系的扩充与复数的概念,3.1.2 复数的几何意义,本节主要学习复数的几何意义。以在几何上,我们用什么来表示实数引入新课。教学过程以学生探究为主,利用一个复数是由什么来确定,引导学生来理解(1)复数的第一个几何意义:复数与复平面内的点一一对应;(2)复数的第二个内何意义:复数与向量一一对应。使学生能够灵活应用所学知识,加深对复数几何意义的理解。 教学过程例题与变式结合,通过例1和变式1和2巩固掌握复数与复平面内的点一一对应,解决了有关复数与点之间的相关问题。通过例2和变式巩固掌握复数的模、以及复数所对应的点所表示的几何图形的问题等。从而加深了对复数两个几何意义的理解。,在几何上,我们用什么来表示实数?,想一想?,类比实数的表示,可以用什么来表示复数?,实数可以用数轴上的点来表示。,实数,数轴上的点,(形),(数),一一对应,回忆,复数的一般形式?,Z=a+bi(a, bR),a为实部!,b为虚部!,一个复数由什么唯一确定?,复数z=a+bi,有序实数对(a,b),直角坐标系中的点Z(a,b),x,y,o,b,a,Z(a,b),建立了平面直角坐标系来表示复数的平面,x轴-实轴,y轴-虚轴,(数),(形),-复数平面 (简称复平面),一一对应,z=a+bi,复数的几何意义(一),例1 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围。,表示复数的点所在象限的问题,复数的实部与虚部所满足的不等式组的问题,转化,(几何问题),(代数问题),一种重要的数学思想:数形结合思想,温 馨 提 示,变式训练1:已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点在直线x-2y+4=0上,求实数m的值.,解:复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点是(m2+m-6,m2+m-2),,(m2+m-6)-2(m2+m-2)+4=0,,m=1或m=-2.,变式训练2:已知复数z=(m2+m-6)+(m2+m-2)i,证明:对一切m,此复数所对应的点不可能位于第四象限.,所以不等式解集为空集,,所以复数所对应的点不可能位于第四象限.,复数z=a+bi,直角坐标系中的点Z(a,b),一一对应,平面向量,一一对应,一一对应,复数的几何意义(二),x,y,o,b,a,Z(a,b),z=a+bi,x,O,z=a+bi,y,复数的绝对值,(复数的模),的几何意义:,Z (a,b),对应平面向量 的模| |,即复数 z=a+bi在复平面上对应的点Z(a,b)到原点的距离。,| z | = | |,例2 求下列复数的模: (1)z1=-5i; (2)z2=-3+4i ; (3)z3=5-5i;,(4)z4=1+mi(mR) ; (5)z5=4a-3ai(a0).,x,y,O,(2)设z=x+yi(x,yR),则,解:(1)满足|z|=5(zR)的z值有两个,为-5和5.,5,5,5,5,(2)满足|z|=5(zC)的z值有几个?,变式训练:,(1)满足|z|=5(zR)的z值有几个?,这些复数对应的点在复平面上构成怎样的图形?,所以满足|z|=5(zC)对应的点在复平面构成了以原点为圆心,以5为半径的圆.,一一对应,一一对应,一一对应,复数的几何意义,比一比?,复数还有哪些特征能和平面向量类比?,
展开阅读全文