2019-2020年高中数学 第五章 矩阵的特征值与特征向量(一)同步练习 北师大版选修4-2.doc

上传人:tian****1990 文档编号:2924084 上传时间:2019-12-04 格式:DOC 页数:4 大小:46KB
返回 下载 相关 举报
2019-2020年高中数学 第五章 矩阵的特征值与特征向量(一)同步练习 北师大版选修4-2.doc_第1页
第1页 / 共4页
2019-2020年高中数学 第五章 矩阵的特征值与特征向量(一)同步练习 北师大版选修4-2.doc_第2页
第2页 / 共4页
2019-2020年高中数学 第五章 矩阵的特征值与特征向量(一)同步练习 北师大版选修4-2.doc_第3页
第3页 / 共4页
点击查看更多>>
资源描述
2019-2020年高中数学 第五章 矩阵的特征值与特征向量(一)同步练习 北师大版选修4-21、矩阵的特征值是( )A、 B、C、 D、2、零为矩阵A的特征值是A为不可逆的( )A、充分条件 B、必要条件 C、充要条件 D、非充分非必要条件3、给定矩阵及向量,对任意的向量,则 。4、矩阵的特征值是 。5、已知矩阵有特征值及对应特征向量,并有特征值及对应向量,则矩阵A= 。6、,则。7、的特征值为_。8、求矩阵的特征值和特征向量。9、给定矩阵M=及向量,(1)求M的特征值及对应的特征向量;(2)确定实数a,b使向量可表示为;(3)利用(2)中表达式间接计算。10、对下列兔子、狐狐狸模型进行分析:(1)分别确定以上模型对应矩阵的特征值;(2)分别确定以上模型最大特征值对应的特征向量,及较小特征值对应的特征向量:(3)如果初始种群中兔子与狐狸的数量,分别把第n年种群中兔子与狐狸的数量表示为和的线性组合,即;(4)利用(3)中表达式分析当n越来越大时, 的变化趋势。参考答案:1、A 2、C3、 4、5、 6、7、8、;属于特征值的一个特征向量为,的一个特征向量为。解:矩阵M的特征值满足方程: 解得矩阵M的两个特征值:。(1)设属于特征值的特征向量为,则它满足方程,即,亦即,则可取作为属于特征值的一个特征向量。(2)同理可得的一个特征向量为。9、(1);的一个特征向量为,的特征向量为;(2);(3);。10、令,则模型可表示为,(1)矩阵M有两个特征值:;(2)属于最大特征值的特征向量,属于较小特征值的特征向量取;(3)由则 即(4)当n越来越大时,越来越大,并趋向于无穷大,则和分别越来越大,趋向于无穷大。说明在此模型下,兔子和狐狸的数量将随时间增加而增加。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!