资源描述
应用举例,高度,角度,距离,正弦定理 余弦定理,例1、设A、B两点在河的两岸,要测量两点之间的距离。,测量者在A的同测,在所在的河岸边选定一点C,测出AC的距离是55cm,BAC51o, ACB75o,求A、B两点间的距离(精确到0.1m),分析:已知两角一边,可以用正弦定理解三角形,解:根据正弦定理,得,答:A,B两点间的距离为65.7米。,例2、A、B两点都在河的对岸(不可到达),设计一种测量两点间的距离的方法。,分析:用例1的方法,可以计算出河的这一岸的一点C到对岸两点的距离,再测出BCA的大小,借助于余弦定理可以计算出A、B两点间的距离。,解:测量者可以在河岸边选定两点C、D,测得CD=a,并且在C、D两点分别测得BCA=, ACD=, CDB=, BDA=.在ADC和BDC中,应用正弦定理得,计算出AC和BC后,再在ABC中,应用余弦定理计算出AB两点间的距离,练习1、一艘船以32.2n mile / hr的速度向正北航行。在A处看灯塔S在船的北偏东20o的方向,30min后航行到B处,在B处看灯塔在船的北偏东65o的方向,已知距离此灯塔6.5n mile 以外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?,练习2自动卸货汽车的车厢采用液压机构。设计时需要计算 油泵顶杆BC的长度已知车厢的最大仰角是60,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为620,AC长为1.40m,计算BC的长(精确到0.01m),(1)什么是最大仰角?,(2)例题中涉及一个怎样的三角 形?,在ABC中已知什么,要求什么?,练习2自动卸货汽车的车厢采用液压机构。设计时需要计算 油泵顶杆BC的长度已知车厢的最大仰角是60,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为620,AC长为1.40m,计算BC的长(精确到0.01m),已知ABC中AB1.95m,AC1.40m, 夹角CAB6620,求BC,解:由余弦定理,得,答:顶杆BC约长1.89m。,实际问题,解应用题的基本思路,已知ABC中,三个内角A,B,C的对边分别是a,b,c,若ABC的面积为S,且2S=(a+b)c,求tanC的值。,在ABC中,如果(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC,试确定ABC的形状。,
展开阅读全文