考研数学 第三章 一元函数积分学(不定积分)

上传人:H****r 文档编号:275769 上传时间:2018-04-23 格式:DOC 页数:17 大小:645KB
返回 下载 相关 举报
考研数学 第三章   一元函数积分学(不定积分)_第1页
第1页 / 共17页
考研数学 第三章   一元函数积分学(不定积分)_第2页
第2页 / 共17页
考研数学 第三章   一元函数积分学(不定积分)_第3页
第3页 / 共17页
点击查看更多>>
资源描述
1第三章 一元函数积分学 (不定积分)一. 求下列不定积分:1. dxx1ln2解. l2 cxxd21ln4l1ln22. cxdxx 22 art2arctarct1arctn3. osi)os(i2解. cxxddxx 22 os1incos1insic1in)c1(i4. )(8d解. 方法一: 令 , tx1 cttdtxd )1ln(81)1( 887828= cx8ln方法二: dxxdxd)1()1()1( 87878= =cx)ln(|l88 cx81ln5 dxdxcosi12i2)sin(2cosin1dxin1cosi12xxx 2cos2sin)(22tan1t2|cosin1|l2 xdxxc|l|i|l二. 求下列不定积分:1. 2)1(2xxd解. 1)()1()( 222 xdxx txan令 tdseco2=ccttdsinsico22. 241x解. 令 x = tan t, cttdtdttdxd sin1i3sinisincoetanc1 24434224= cxx23213. 221)(xd解. 令 tan tdttdttx 222222 sin1cosinsec)1an()(= xct2rtsinar4. (a 0)2xd解. 令 tasin ctatdtatadx 2sin412cos1cosi2223= cxaxa222rcsin5. dx32)1(解. 令 tsin dttdttd42cos214)2cos1(cos)(432= tttttt in3si83)(8in1= cx2os41sarc83= tt)in(cin2i= cxx518arcsi326. dx421解. 令 t dttdttdx224242 11usin令 ud2cosi= cxcu323)(os7. dxx12解. 令 tdtansec,sec ctdtttdxx sin)cos1(1122xarcos2三. 求下列不定积分:41. dxex1243解. ceedxe xxxx )arctn(1)(12222432. )1(xd解. 令 , t2lntcttdtttddx 2lnarl112ln)1()41( 22= cxx)artln四. 求下列不定积分:1. dx105)2(解. dxxxxd 949595105 )2()2()2(9)(= dx 98398495 4)()2(= 96297398495 )(345)2(5)2(5)( xxxc 9495 )(64)(67832. 41xd解. 24424 )(111/ tdtdtttx令 cxcuduut 2422 ln|setan|lsecan令5五. 求下列不定积分:1. xd2cos解. xdxd2sin41)2cos1(2xsiin42cx8s2. xd3sec解. xdxxtansecttansectasec= xddx 32 sec|t|l)1(tncxxd |tasec|ltasec1sec33. x2)(ln解. dxxdd23323 )(ln)(l1)(ln)(lx223l6l)(l dx23 6ln)(llcxln)(l)(ln234. dx)cos(l解. dxxxdx )cos(ln)sin(l)co(l)sin(l)co(ln x 2)cs(l5. dxxxdxd 2sin81si2sin81cosin81sino 23434cxot4i2i4s2六. 求下列不定积分:61. dxx2)1(ln解. 222 1)ln(1)(l xd= xxx 222ln1ta令 tdt222 sec1an1)(l = dtx22sico)1(ln= t22in1)(l= ctxsil4)1(ln2= x21ln)(l22. dx21arctn解. dxxxdx 2222 1arctn1arctnrt= c )l(rt1rt1223. dxe2arctn解. dxeedexxxxx 2222 1arctn1arctn1rtexxx2rt1 xxxx )(rt22ceedee xxxxxx artnarctn(1)1(arctn2 227七. 设 , 求 .xexf)32(1ln) 0dxf)(解. dxdf )(l)(212 222)4( 3)ln(1lncexcxx 0考虑连续性, 所以c =1+ c 1, c1 = 1 + cdxf)(excxx)4( 3)1ln(2ln220八. 设 , (a, b 为不同时为零的常数), 求 f(x).aefxcossin)(解. 令 , , 所以ttl, )cos(ln)in(l)( ttafdxxxf cssi)(= cbba)s(l)()l2九. 求下列不定积分:1. dxx)3(2解. cxxx 3ln)(232222. d)1(53(232解. )523()523(xdxxxc22)(513. dxx21)ln(8解. cxxdxdxx )1(ln21)ln()1ln(1)ln( 22224. )1l()(22x解. cxxdxd |)1ln(|)1ln()ln()1( 2222十. 求下列不定积分:1. dx)(arct2解. 12222 )(arctn1)()1(arctn)1(rtn xdxd dxx 2222 )(tarctrttxtdxt cos1arctn1os1rtna 222令cecttx in4ti841rc2xe221arnt2. dx1arcsin解. 令 tt2an,ri则 ctttdttdtx ana1arcsin 2222xxcx 1rcsi)1(arcsinri3. dxx221acsin解. dttdtttx )1(cscosin1sinri 22222令9 ctdtdtt 21coco21|sin|lcxxx2)(arsin|larci4. dx)1(tn2解. dttdtttx )1(cssecan)(arct 2222令22ott1os ttdtdt cxxxctt 22 )(artn1|lnar1|in|lcocxx22)(art1lart十一. 求下列不定积分:1. d234解. dttdtttxx 233 cosincos2sin8i令dt 532co)cs1(32xx2523)4(42. a2解. dtadtattx 22 cos1nsecsec令xat rtn23. dxex21)(解. udutdttdtxx cosin1si11)()( 222令令10cecuxx21arsinos4. (a 0)dx2解. xu令 dua24tasin2令 td42si8= ttdta )cos1(24)cos1(8 22= ctattadtatt 4sinsi34cosin222= ctttta )in1(sinci43 222= acoosn3= caxxaxa 222rcsi32= ca)(3rin2十二. 求下列不定积分:1. xdcos1sin解. xdxdxd 222 cos1cos1sin)(co1insi )()(cos1 22uux令 cdu|ln1)2(xx|cos12|lcos12. d2in解. xdxxcos2)(cos2cos11tx2tan令 |cos2|ln32|cos|ln12 xtdxtdt= ct |s|l)2(ta1art4|s|l3rc43. dxosin解. dxxcosin121c= dxdx cosin12)(osin)(s212= )4sin()c(si x= cx|82ta|l)os(in21十三. 求下列不定积分:1. dx1解. cttdttx 3332 141)(1令c2342. dxe1解. dtdtttedxexx )1(secan1sec12令ctt xxx ro)ln(|asc|ln23. dxxar1解. 令 tdxtxtt ansec2,sec,1an,rc 212 dttdtdtttdxx 222 cos1ananseca1arctn22 tttos tttct 2|s|lnacxxx 2)1(artn|l1rct第三章 一元函数积分学 (定积分)一若 f(x)在a,b 上连续, 证明: 对于任意选定的连续函数(x), 均有 , 0)(badxf则 f(x) 0.证明: 假设 f() 0, a 0. 因为 f(x)在a,b 上连续, 所以存在 0, 使得在 , + 上 f(x) 0. 令 m = . 按以下方法定义a,b 上(x): 在)(inxfx , + 上 (x) = , 其它地方(x) = 0. 所以22)(x.02()( dxfdxfba和 矛盾. 所以 f(x) 0.0)(baf二. 设为任意实数, 证明: = .20)(tan1dxI 4)(cot120dx证明: 先证: =4)(cos)(sin20xff 20)(s)(siff令 t = , 所以x20)(cos)(sindxff 02 )(sin)(cotdftf= 20)(in)(tftf 0)(i)(xfxf于是 20)(cos)(sindxfxf 20)(cos)(sindxff 20)(sin)(codxfxf13= 2)(cos)(sin020 dxfxf所以 = .4)()(i20ff 0)(cos)(sindxfxf所以 20)(tan1dxI 4)(in)(cosi12020 dx同理 .4)(cot120dxI三已知 f(x)在 0,1上连续 , 对任意 x, y 都有|f(x) f(y)| 0, (0 0, 证明: 对于满足 0 0因为 f(0) = f(1) = 0x0 (0,1)使 f(x0) = (f(x)1max所以 (1)df10)( dff0)()(在(0,x 0)上用拉格朗日定理0()ff)),(0x16在(x 0, 1)上用拉格朗日定理0)()(xff)1,(0x所以 )(4)1( )()( 0010xfxf ffdxfdd (因为 )ab2所以 104)()(dxfxf由(1)得0)(xf十. 设 f(x)在0, 1上有一阶连续导数 , 且 f(1)f(0) = 1, 试证:1)(102dxf证明: 102)(xf 1)0(1()( 221002 fdxf十一. 设函数 f(x)在0, 2上连续, 且 = 0, = a 0. 证明: 0, 2, 使20)(xf20)(f|f()| a.解. 因为 f(x)在 0, 2上连续, 所以|f(x)|在0, 2上连续, 所以 0, 2, 取 使|f()| = max |f(x)| (0 x 2)使|f( )| |f(x)|. 所以|)(|1|)(|)(|1|)(1| 202020 fdxfdxfxdfa 第三章 一元函数积分学 (广义积分)一. 计算下列广义积分:(1) (2) (3) 2031)(dxex02)4(1dxx23)1(xd(4) (5) (6) 10sinl2 023)(arctn解. 17(1) 3223102031 )1()(lim)( edxedxexx(2) 24li)4(02202 bdx(3) 23)1(xd因为 , 所以 积分收敛.所以1)(lim233x 023)(xd=2 23)1(dtxdan)(023令 2cossec2003tdt(4) 21)s(ln)i(l1lim)si(ll)sin(l 0100 xxx(5) 3tansec13212 ddx(6) 12cos)(arctn20203032 tt
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 财经资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!