2019-2020年高考数学二轮复习 专题9 算法与推理 教案 文.doc

上传人:tian****1990 文档编号:2748599 上传时间:2019-11-29 格式:DOC 页数:8 大小:251KB
返回 下载 相关 举报
2019-2020年高考数学二轮复习 专题9 算法与推理 教案 文.doc_第1页
第1页 / 共8页
2019-2020年高考数学二轮复习 专题9 算法与推理 教案 文.doc_第2页
第2页 / 共8页
2019-2020年高考数学二轮复习 专题9 算法与推理 教案 文.doc_第3页
第3页 / 共8页
点击查看更多>>
资源描述
2019-2020年高考数学二轮复习 专题9 算法与推理 教案 文【重点知识回顾】答案:顺序结构 分支结构 循环结构 合情推理 归纳推理 类比推理 演绎推理 综合法 分析法 反证法 数学归纳法 【典例例题】题型1算法框图例1(1)定义函数CONRND(a,b)是产生区间(a,b)内的任何一个实数的随机数函数.如图所示的算法框图可用来估计的值.现在N输入的值为100,结果m的输出值为21,则由此可估计的近似值为.(2)(xx年江西)下图是某算法的程序框图,则程序运行后输出的结果是.【分析】(1)读懂算法框图的循环结构和随机数函数,用几何概型求之.(2)先考虑循环变量s和计数变量n的初始值,再确定循环体及循环次数并计算每次的运算结果,最后确定输出变量s的值.【解析】(1)点(A,B)应在矩形区域(A,B)|-1A1,-1B1时,输出m=21,表示点(A,B)在矩形区域内部和单位圆的外部有21个点,根据几何概率得=,=4 =3.16.(2)第一次,s1=0+(-1)1+1=0,n=2;第二次,s2=0+(-1)2+2=3,n=3;第三次,s3=3+(-1)3+3=5,n=4;第四次,s4=5+(-1)4+4=109,故填10.【答案】(1)3.16(2)10总结:(1)算法用来解决实际问题会是高考的一个命题亮点.本题借助框图,考查了几何概型,又验证了圆周率的近似值,是一道好题.(2)算法框图命题背景常常是数列、统计、函数等等.在知识的交汇处命题是高考的一大特色.本题就是用框图解决数列的一道好题.题型2 直接证明与间接证明综合法是“由因导果”,而分析法则是“执果索因”,它们是截然相反的两种证明方法,分析法便于我们去寻找思路,而综合法便于过程的叙述,两种方法各有所长,在解决具体的问题中,综合应用,效果会更好.一般直接证明中的综合法会在解答题中重点考查.而反证法一般作为客观题的判断方法,很少单独命题,但可能会在大题中用到.例3如图,四棱锥P-ABCD中,PA底面ABCD,PCAD,底面ABCD为梯形,ABDC,ABBC,AB=BC,点E在棱PB上,且PE=2EB.(1)求证:平面PAB平面PCB; (2)求证:PD平面EAC.【分析】本题以立体几何中的四棱锥为载体,重点考查平行与垂直这两大位置关系的推理论证,其中第(1)问,要证面面垂直,即要证两平面中的一个平面经过另一平面的一条垂线,从而问题的关键在于寻找平面PAB或平面PCB的垂线,根据图形的特征,可证CB与平面PAB垂直,这可由条件ABBC,PACB即得;第(2)问要使得线面平行,只需保证线线平行,即使PD与平面AEC内的一条直线平行,连结BD交AC于M,从而问题转化为探究PD与EM能否平行的问题.【解析】(1)PA底面ABCD,PABC,又ABBC,PAAB=A,BC平面PAB.又BC平面PCB,平面PAB平面PCB.(2)PA底面ABCD,AC为PC在平面ABCD内的射影.又PCAD,ACAD.在梯形ABCD中,由ABBC,AB=BC,得BAC=,又ABDC,DCA=BAC=,又ACAD,故DAC为等腰直角三角形.DC=AC=AB=2AB.连结BD交AC于点M,连结EM,则=2.在BPD中,=2,PDEM.又PD平面EAC,EM平面EAC,PD平面EAC.立体几何是高中数学的重要组成部分,在高考中的试题多以中档题形式出现,综合考查线面平行及垂直问题等基础知识,在备考复习时,要依据课本知识,构建空间思维网络,熟练掌握线面平行、垂直的性质、判定定理.题型3:合情推理例3(1)观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,你由此可以归纳出什么规律?(2)把下面在平面内成立的结论类比推广到空间,并判断类比的结论是否成立:1)如果一条直线与两条平行直线中的一条相交,则必于另一条相交。2)如果两条直线同时垂直与第三条直线,则这两条直线平行。解析:(1)设为个点可连的弦的条数,则(2)1)一个平面如和两个平行平面中的一个相交,则必然和另一个也相交,次结论成立;2)若两个平面同时垂直第三个骗马,则这两个平面也相互平行,此结论不成立。点评:当前提为真,结论可能为真的推理。一定要理解合情推理的必要性。题型4:演绎推理例4(07年天津)如图,在五面体中,点是矩形的对角线的交点,面是等边三角形,棱。(1)证明/平面;(2)设,证明平面。解析:()证明:取CD中点M,连结OM.在矩形ABCD中,又,则,连结EM,于是四边形EFOM为平行四边形.又平面CDE,切EM平面CDE,FO平面CDE()证明:连结FM,由()和已知条件,在等边CDE中,且。因此平行四边形EFOM为菱形,从而EOFM而FMCD=M,CD平面EOM,从而CDEO.而,所以EO平面CDF。点评:本小题考查直线与平面平行、直线与平面垂直等基础知识,考查空间想象能力和推理论证能力.题型5:特殊证法(如:数学归纳法)例5(1)用反证法证明:如果ab0,那么;(2)(全国II)设数列an的前n项和为Sn,且方程x2anxan0有一根为Sn1,n1,2,3,。()求a1,a2;()an的通项公式。解析:(1)假设不大于,则或者0,b0,ab0矛盾,.证法二(直接证法),ab0,a - b0即,。(2)()当n1时,x2a1xa10有一根为S11a11,于是(a11)2a1(a11)a10,解得a1。当n2时,x2a2xa20有一根为S21a2,于是(a2)2a2(a2)a20,解得a1。()由题设(Sn1)2an(Sn1)an0,Sn22Sn1anSn0。当n2时,anSnSn1,代入上式得Sn1Sn2Sn10由()知S1a1,S2a1a2。由可得S3,由此猜想Sn,n1,2,3,下面用数学归纳法证明这个结论(i)n1时已知结论成立;(ii)假设nk时结论成立,即Sk,当nk1时,由得Sk1,即Sk1,故nk1时结论也成立综上,由(i)、(ii)可知Sn对所有正整数n都成立,于是当n2时,anSnSn1,又n1时,a1,所以an的通项公式an,n1,2,3,点评:要应用好反证法、数学归纳法证明一些涉及代数、不等式、几何的结论。题型10:框图例10(1)方案1:派出调研人员赴北京、上海、广州调研,待调研人员回来后决定生产数量;方案2:商家如战场!抓紧时间搞好调研,然后进行生产,调研为此项目的的瓶颈,因此需要添加力量,齐头并进搞调研,以便提前结束调研,尽早投产使产品占领市场.(2)公司人事结构图解析:(1)方案1:派出调研人员赴北京、上海、广州调研,待调研人员回来后决定生产数量。方案2: 商家如战场!抓紧时间搞好调研,然后进行生产,调研为此项目的的瓶颈,因此需要添加力量,齐头并进搞调研,以便提前结束调研,尽早投产使产品占领市场。于是:(2)点评:建立合理的结构图和流程图解决实际问题,要形成良好的书写习惯遵循从上到下、从左到右的规则。【模拟演练】1.如果执行右面的程序框图,那么输出的()24502500255026522.如右图所示的程序框图的输出结果是 ( )A. B. C. D. 开始?是否输出结束kn开始S1,k1结束是否SS2输出Skk+1输入n=3第2题k-50开始k=1S=0结束是否S=S-2k输出Sk=k-1第1题3.如果执行右面的程序框图,那么输出的是 ( )A B C D是否开始输入a,b,cx=abx输出x结束x=bx=c否是4.右面的程序框图,如果输入三个实数a、b、c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( )A. c xB. x cC. c bD. b c二.填空题1如果执行下面的程序框图,那么输出的=_ 第4题开始k1S0k100?SS+2k-1kk+1结束输出S否是2.阅读图4的程序框图,若输入m=4,n=3,则输出a=_,i=_。 (注:框图中的赋值符号“”,也可以写成“”或“:”)3.运行下图所示的程序流程图,则输出的值PPIII+2P1,I1开始输出I是否结束(第3题图)为_ 4 .执行下图的程序框图,如果输入的,那么输出的_. 开始结束是否A35A1A2A+1打印5.根据下面的框图,打印的最后一个数据是 . nk开始输入正整数kn-1,S0SS+2n输出S结束是否nn+1第4题答案:一.选择题1. 解答过程:由程序知答案C2.答案:C3.答案:C4. 解答过程:易知选A二.填空题1.答案:100002. 解答过程:要结束程序的运算,就必须通过整除的条件运算,而同时也整除,那么的最小值应为和的最小公倍数12,即此时有。3. 答案:4. 答案:2548 5. 答案:63
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!