2019-2020年高中物理 第八章 气体 第4讲 习题课:理想气体状态方程的综合应用学案 新人教版选修3-3.doc

上传人:tian****1990 文档编号:2724625 上传时间:2019-11-29 格式:DOC 页数:12 大小:339.50KB
返回 下载 相关 举报
2019-2020年高中物理 第八章 气体 第4讲 习题课:理想气体状态方程的综合应用学案 新人教版选修3-3.doc_第1页
第1页 / 共12页
2019-2020年高中物理 第八章 气体 第4讲 习题课:理想气体状态方程的综合应用学案 新人教版选修3-3.doc_第2页
第2页 / 共12页
2019-2020年高中物理 第八章 气体 第4讲 习题课:理想气体状态方程的综合应用学案 新人教版选修3-3.doc_第3页
第3页 / 共12页
点击查看更多>>
资源描述
2019-2020年高中物理 第八章 气体 第4讲 习题课:理想气体状态方程的综合应用学案 新人教版选修3-3目标定位1.进一步熟练掌握气体三定律,并能熟练应用.2.熟练掌握各种气体图象,及其它们之间的转换.3.掌握理想气体状态方程的几个推论1气体三定律(1)玻意耳定律内容:一定质量的某种气体,在温度不变的情况下,压强p与体积V成反比公式:pVC或p1V1p2V2.(2)查理定律内容:一定质量的某种气体,在体积不变的情况下,压强p与热力学温度T成正比公式:C或.(3)盖吕萨克定律内容:一定质量的某种气体,在压强不变的情况下,其体积V与热力学温度T成正比公式:C或.2理想气体状态方程对一定质量的理想气体:C或.一、相互关联的两部分气体的分析方法这类问题涉及两部分气体,它们之间虽然没有气体交换,但其压强或体积这些量间有一定的关系,分析清楚这些关系是解决问题的关键,解决这类问题的一般方法是:(1)分别选取每部分气体为研究对象,确定初、末状态参量,根据状态方程列式求解(2)认真分析两部分气体的压强、体积之间的关系,并列出方程(3)多个方程联立求解例1如图1所示,内径均匀的U形管中装入水银,两管中水银面与管口的距离均为l10.0 cm,大气压强p075.8 cmHg时,将右侧管口封闭,然后从左侧管口处将一活塞缓慢向下推入管中,直到左右两侧水银面高度差达h6.0 cm为止求活塞在管内移动的距离图1答案6.4 cm解析设活塞移动的距离为x cm,活塞的横截面积为S,则左侧气体体积为(lx)S,右侧气体体积为(l)S,取右侧气体为研究对象由玻意耳定律得p0lSp2(l)S解得p2 cmHg左侧气柱的压强为p1p2ph cmHg取左侧气柱为研究对象,由玻意耳定律得p0lSp1(lx)S,解得x6.4 cm.借题发挥两部分气体问题中,对每一部分气体来讲都独立满足常数;两部分气体往往满足一定的联系:如压强关系、体积关系等,从而再列出联系方程即可二、变质量问题分析变质量问题时,可以通过巧妙选择合适的研究对象,使这类问题转化为定质量的气体问题,用理想气体状态方程求解1打气问题向球、轮胎中充气是一个典型的气体变质量的问题只要选择球内原有气体和即将打入的气体作为研究对象,就可以把充气过程中的气体质量变化的问题转化为定质量气体的状态变化问题2抽气问题从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题分析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象,总质量不变,故抽气过程可看做是等温膨胀过程例2氧气瓶的容积是40 L,其中氧气的压强是130 atm,规定瓶内氧气压强降到10 atm时就要重新充氧,有一个车间,每天需要用1 atm的氧气400 L,这瓶氧气能用几天?假定温度不变答案12天解析用如图所示的方框图表示思路由V1V2:p1V1p2V2,V2 L520 L,由(V2V1)V3:p2(V2V1)p3V3,V3 L4 800 L,则12(天)三、气体图象与图象之间的转换理想气体状态变化的过程,可以用不同的图象描述已知某个图象,可以根据这一图象转换成另一图象,如由p V图象变成p T图象或V T图象例3使一定质量的理想气体按图2中箭头所示的顺序变化,图中BC是一段以纵轴和横轴为渐近线的双曲线图2(1)已知气体在状态A的温度TA300 K,求气体在状态B、C和D的温度各是多少(2)将上述状态变化过程在V T中用图线表示出来(图中要标明A、B、C、D四点,并且要画箭头表示变化的方向),说明每段图线各表示什么过程答案见解析解析由p V图可直观地看出,气体在A、B、C、D各状态下的压强和体积为VA10 L,pA4 atm,pB4 atm,pC2 atm,pD2 atm,VC40 L,VD20 L.(1)根据理想气体状态方程可得TCTA300 K600 KTDTA300 K300 KTBTC600 K(2)由状态B到状态C为等温变化,由玻意耳定律有:pBVBpCVC得VB L20 L在VT图上状态变化过程的图线由A、B、C、D各状态点依次连接,如图所示AB是等压膨胀过程,BC是等温膨胀过程,CD是等压压缩过程四、汽缸类问题的处理方法解决汽缸类问题的一般思路:(1)弄清题意,确定研究对象一般来说,研究对象分两类:一类是热学研究对象(一定质量的理想气体);另一类是力学研究对象(汽缸、活塞或某系统)(2)分析清楚题目所述的物理过程,对热学研究对象分析清楚初、末状态及状态变化过程,依气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力学规律列出方程(3)注意挖掘题目中的隐含条件,如几何关系等,列出辅助方程(4)多个方程联立求解对求解的结果注意检验它们的合理性例4如图3所示,汽缸质量为m1,活塞质量为m2,不计缸内气体的质量及一切摩擦,当用一水平外力F拉活塞时,活塞和汽缸最终以共同的加速度运动求此时缸内气体的压强(已知大气压为p0,活塞横截面积为S)图3答案p0解析以活塞m2为研究对象,其受力分析如图所示根据牛顿第二定律,有FpSp0Sm2a由于方程中有p和a两个未知量,所以还必须以整体为研究对象,列出牛顿第二定律方程F(m1m2)a联立可得pp0.借题发挥求解封闭气体的压强时,必须转换为以活塞等为研究对象,由于本题中系统处于加速状态,因此还必须以整体为对象进行研究,列动力学方程,求解结果.相关联的两部分气体问题1如图4所示,一个密闭的汽缸,被活塞分成体积相等的左、右两室,汽缸壁与活塞是不导热的,它们之间没有摩擦,两室中气体的温度相等现利用右室中的电热丝对右室加热一段时间,活塞达到平衡后,左室的体积变为原来的,气体的温度T1300 K,求右室气体的温度图4答案500 K解析根据题意对汽缸中左右两室中气体的状态进行分析:左室的气体:加热前p0、V0、T0,加热后p1、V0、T1右室的气体:加热前p0、V0、T0,加热后p1、V0、T2根据恒量,得:左室气体:右室气体:所以解得T2500 K.变质量问题2某种喷雾器的贮液筒的总容积为7.5 L,如图5所示,装入6 L的药液后再用密封盖将贮液筒密封,与贮液筒相连的活塞式打气筒每次能压入300 cm3,1 atm的空气,设整个过程温度保持不变,求:图5(1)要使贮气筒中空气的压强达到4 atm,打气筒应打压几次?(2)在贮气筒中空气的压强达到4 atm时,打开喷嘴使其喷雾,直到内外气体压强相等,这时筒内还剩多少药液?答案(1)15(2)1.5 L解析(1)设每打一次气,贮液筒内增加的压强为p由玻意耳定律得:1 atm300 cm31.5103cm3pp0.2 atm,需打气次数n15(2)设停止喷雾时贮液筒内气体体积为V由玻意耳定律得:4 atm1.5 L1 atmVV6 L故还剩贮液7.5 L6 L1.5 L3如图6所示,一定质量的理想气体从状态A经B、C、D再回到A,问AB、BC、CD、DA分别是什么过程?已知在状态A时体积为1 L,请把此图改画为p V图象图6答案见解析解析AB过程是等容升温升压;BC过程是等压升温增容,即等压膨胀;CD过程是等温减压增容,即等温膨胀;DA过程是等压降温减容,即等压压缩已知VA1 L,则VB1 L(等容变化),由(等压变化)得VCTC900 L2 L由pDVDpCVC(等温变化)得VDVC2 L6 L改画的p V图象如图所示汽缸类问题4如图7所示,汽缸长为L1 m,固定在水平面上,汽缸中有横截面积为S100 cm2的光滑活塞,活塞封闭了一定质量的理想气体,当温度为t27 ,大气压强为p01105Pa时,气柱长度为l90 cm,汽缸和活塞的厚度均可忽略不计求:图7(1)如果温度保持不变,将活塞缓慢拉至汽缸右端口,此时水平拉力F的大小是多少?(2)如果汽缸内气体温度缓慢升高,使活塞移至汽缸右端口时,气体温度为多少摄氏度?答案(1)100 N(2)60.3 解析(1)设活塞到达缸口时,被封闭气体压强为p1,则p1Sp0SF由玻意耳定律得:p0lSp1LS解得:F100 N(2)由盖吕萨克定律得:解得:t60.3 (时间:60分钟)题组一相关联的两部分气体问题1如图1所示,两端密封,下部装有水银,上部为空气柱的U形管,静止时,管内水银面的高度差为h,当U形管做自由落体运动时,h将()图1A增大 B减小C不变 D不能判断答案A解析U形管自由落体时,水银柱不再产生压强,故右边气体压强减小,体积增加,左边气体压强增大,体积减小,所以h增大2如图2所示,将装有温度都为T的同种气体的两容器用水平细管相连,管中有一小段水银将A、B两部分气体隔开,现使A、B同时升高温度,若A升高到TTA,B升高到TTB,已知VA2VB,要使水银保持不动,则()图2ATA2TB BTATBCTATB DTATB答案B解析初状态pApB,末状态pApB,所以pApB水银柱保持不动,则V不变对A:,对B:,得TATB3一圆柱形汽缸直立在地面上,内有一具有质量而无摩擦的绝热活塞,把汽缸分成容积相同的A、B两部分,如图3所示,两部分气体温度相同,都是T027 ,A部分气体压强pA01.0105 Pa,B部分气体压强pB02.0105 Pa.现对B部分气体加热,使活塞上升,使A部分气体体积减小为原来的.求此时:图3(1)A部分气体的压强pA;(2)B部分气体的温度TB.答案(1)1.5105 Pa(2)500 K解析(1)A部分气体等温变化,由玻意耳定律:pA0VpAV,所以pApA0,把pA01.0105 Pa代入得pA1.5105 Pa.(2)B部分气体:初状态:pB02.0105 Pa,VB0V,TB0300 K,末状态:pBpA(pB0pA0)2.5105 Pa.VBVVV,由理想气体状态方程,得TB K500 K.题组二变质量问题4如图4所示,一太阳能空气集热器,底面及侧面为隔热材料,顶面为透明玻璃板,集热器容积为V0,开始时内部封闭气体的压强为p0,经过太阳曝晒,气体温度由T0300 K升至T1350 K.图4(1)求此时气体的压强;(2)保持T1350 K不变,缓慢抽出部分气体,使气体压强再变回到p0.求集热器内剩余气体的质量与原来总质量的比值答案(1)p0(2)解析(1)由题意知,气体体积不变,由查理定律得所以此时气体的压强p1p0p0p0.(2)抽气过程可等效为等温膨胀过程,设膨胀后气体的总体积为V2,由玻意耳定律可得p1V0p0V2可得V2V0所以集热器内剩余气体的质量与原来总质量的比值为.5用打气筒将1 atm的空气打进自行车胎内,如果打气筒容积V500 cm3,轮胎容积V3 L,原来压强p1.5 atm.现要使轮胎内压强为p4 atm,问用这个打气筒要打气几次?(设打气过程中空气的温度不变)()A5次 B10次C15次 D20次答案C解析因为温度不变,可应用玻意耳定律的分态气态方程求解pVnp1VpV,代入数据得15 atm3 Ln1 atm0.5 L4 atm3 L,解得n15,故答案选C.6钢瓶中装有一定质量的气体,现在用两种方法抽钢瓶中的气体:第一种方法是用小抽气机,每次抽出1 L气体,共抽取三次;第二种方法是用大抽气机,一次抽取3 L气体这两种抽法中,抽取气体质量较大的是()A第一种抽法B第二种抽法C两种抽法抽出的气体质量一样大D无法判定答案A解析设初态气体压强为p0,抽出气体后压强变为p,对气体状态变化应用玻意耳定律,则第一种抽法:p0Vp1(V1),p1p0;同理p2p1p0()2;三次抽完后的压强p3:p3p0()3.第二种抽法:p0Vp(V3),得pp0.比较可知:p3p0()3pp0.即第一种抽法抽出气体后,剩余气体的压强小,即抽出的气体质量大题组三气体图象与图象的转换7一定质量理想气体,状态变化过程如图5中ABC图线所示,其中BC为一段双曲线若将这一状态变化过程表示在pT图或VT图中,下列选项正确的是()图5答案AC8一定质量的理想气体经历了温度缓慢升高的变化,如图6所示,VT和pT图各记录了其部分变化过程,试求:图6(1)温度为600 K时气体的体积;(2)在VT图象上将温度从400 K升高到600 K的变化过程补充完整答案见解析解析(1)由理想气体状态方程,代入数据,得V23 m3(2)如图所示题组四汽缸类问题9如图7所示,在光滑的水平面上,有一个内、外壁都光滑的汽缸,汽缸的质量为M,汽缸内有一质量为m(mp2 Bp1V2 DV1p2,由玻意耳定律得V1V2.故选项A、D正确10如图8所示,竖直的弹簧支持着一倒立汽缸内的活塞,使汽缸悬空而静止设活塞与缸壁间无摩擦,可以在缸内自由移动缸壁导热性良好,缸内气体的温度能与外界大气温度相同下列结论中正确的是()图8A若外界大气压增大,则弹簧的压缩量将会增大一些B若外界大气压增大,则汽缸的上底面距地面的高度将增大C若外界气温升高,则汽缸的上底面距地面的高度将减小D若外界气温升高,则汽缸的上底面距地面的高度将增大答案D解析外界大气压增大时,气体体积减小,外界气温升高时,气体体积增大,但对于整个系统,弹簧的弹力恒等于系统的总重量,弹簧的形变量不变
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!