2019-2020年高中数学《简单的线性规划问题》教案4 新人教A版必修5.doc

上传人:tian****1990 文档编号:2719918 上传时间:2019-11-29 格式:DOC 页数:2 大小:27.50KB
返回 下载 相关 举报
2019-2020年高中数学《简单的线性规划问题》教案4 新人教A版必修5.doc_第1页
第1页 / 共2页
2019-2020年高中数学《简单的线性规划问题》教案4 新人教A版必修5.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述
2019-2020年高中数学简单的线性规划问题教案4 新人教A版必修5教学重点能进行简单的二元线性规划问题教学难点从实际情景中抽象出一些简单的二元线性规划问题,并能加以解决. 教学过程一.复习准备:当满足不等式组时,目标函数的最大值是 (答案:5)二.讲授新课:1.出示例题:某工厂用A,B两种配件生产甲,乙两种产品,每生产一件甲产品使用4个A配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有可能的日生产安排是什么?若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?教师分析师生共同列出表格转化成数学模型列出目标函数求最值给出定义:目标函数把要求的最大值的函数 线性目标函数目标函数是关于变量的一次解析式 线性规划在线性约束条件下求线性目标函数的最大值或最小值问题 可行解满足线性约束条件的解叫做可行解 可行域由所有可行解组成的集合结合以上例题给出解释探究:在上述问题中,如果每生产一件甲产品获利3万元,每生产一件乙产品获利2万元,又应当如何安排生产才能获得最大利润?由上述过程,你能得出最优解与可行域之间的关系吗?2.练习:1) 求的最大值,使满足约束条件 2)求的最大值和最小值,使满足约束条件3.小结:作图求解:作出不等式组所表示的可行域,确定目标函数的最优位置,从而获得最优解. 图解法的实质是数形结合思想的两次运用,第一次是由上步所得线性约束条件,作出可行域,将表示约束条件的不等式组转化成为平面区域这一图形;第二次是将目标函数转化为平行直线系进行探究. 此步的过程可简述为“可行域直线系最优解”三. 作业P105习题A组第4题3.3.2简单的线性规划问题(二)教学重点能进行简单的二元线性规划问题教学难点从实际情景中抽象出一些简单的二元线性规划问题,列出线性目标函数并求最值并能加以解决. 教学过程一.复习准备: 什么是目标函数?线性目标函数?线性规划?可行解?可行域?二.讲授新课:1.出示例题:营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪. 1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元. 为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时使用食物A和食物B多少?教师分析师生共同列出表格转化成数学模型列出目标函数求最值2.练习:某校伙食长期以面粉和大米为主食,面食每100g含蛋白质6个单位,含淀粉4个单位,售价0.5元,米食每100g含蛋白质3个单位,含淀粉7个单位,售价0.4元,学校要求给学生配制盒饭,每盒盒饭至少有8个单位的蛋白质和10个单位的淀粉,问应该如何配置盒饭,才能既科学有费用最少?(答案:面食百克,米食百克)3.小结:线性规划问题首先要根据实际问题列出表达约束条件的不等式,然后分析目标函数中所求量的几何意义,由数形结合思想求解问题. 利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用,关键在于找出约束条件与目标函数,准确地描可行域,再利用图形直观求得满足题设的最优解.三. 巩固练习:1.(xx年全国卷)设满足约束条件,则的最大值是 (答案:5) 项目甲乙丙维生素A(单位/千克)600700400维生素B(单位/千克)800400500维生素C(单位/千克)11942.甲,乙,丙三种食物维生素A,B含量以及成本如右表:某食物营养研究所想用千克甲种食物,千克乙种食物,千克丙种食物配成100千克混合物,并使混合物至少含有56000单位维生素A和63000单位维生素B. 试用表示混合物的成本P(元);并确定的值,使成本最低,并求最低成本. 3.作业:P105 习题A组第4题
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!