2019-2020年高考数学一轮复习 坐标系与参数方程第2讲 参数方程教案 理 选修4-4.doc

上传人:tian****1990 文档编号:2681087 上传时间:2019-11-28 格式:DOC 页数:5 大小:146KB
返回 下载 相关 举报
2019-2020年高考数学一轮复习 坐标系与参数方程第2讲 参数方程教案 理 选修4-4.doc_第1页
第1页 / 共5页
2019-2020年高考数学一轮复习 坐标系与参数方程第2讲 参数方程教案 理 选修4-4.doc_第2页
第2页 / 共5页
2019-2020年高考数学一轮复习 坐标系与参数方程第2讲 参数方程教案 理 选修4-4.doc_第3页
第3页 / 共5页
点击查看更多>>
资源描述
2019-2020年高考数学一轮复习 坐标系与参数方程第2讲 参数方程教案 理 选修4-4【xx年高考会这样考】考查直线、圆和圆锥曲线的参数方程以及简单的应用问题【复习指导】复习本讲时,应紧紧抓住直线的参数方程、圆的参数方程、圆锥曲线的参数方程的建立以及各参数方程中参数的几何意义,同时要熟练掌握参数方程与普通方程互化的一些方法. 基础梳理1参数方程的意义在平面直角坐标系中,如果曲线上的任意一点的坐标x,y都是某个变量的函数并且对于t的每个允许值,由方程组所确定的点M(x,y)都在这条曲线上,则该方程叫曲线的参数方程,联系变数x,y的变数t是参变数,简称参数相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程2常见曲线的参数方程的一般形式(1)经过点P0(x0,y0),倾斜角为的直线的参数方程为(t为参数)设P是直线上的任一点,则t表示有向线段的数量(2)圆的参数方程(为参数)(3)圆锥曲线的参数方程椭圆1的参数方程为(为参数)双曲线1的参数方程为(为参数)抛物线y22px的参数方程为(t为参数)双基自测1 极坐标方程cos 和参数方程(t为参数)所表示的图形分别是()A直线、直线 B直线、圆C圆、圆 D圆、直线解析cos x,cos 代入到cos ,得,2x,x2y2x表示圆又相加得xy1,表示直线答案D2若直线(t为实数)与直线4xky1垂直,则常数k_.解析参数方程所表示的直线方程为3x2y7,由此直线与直线4xky1垂直可得1,解得k6.答案63二次曲线(是参数)的左焦点的坐标是_解析题中二次曲线的普通方程为1左焦点为(4,0)答案(4,0)4(xx广州调研)已知直线l的参数方程为:(t为参数),圆C的极坐标方程为2sin ,则直线l与圆C的位置关系为_解析将直线l的参数方程:化为普通方程得,y12x,圆2sin 的直角坐标方程为x2(y)22,圆心(0,)到直线y12x的距离为,因为该距离小于圆的半径,所以直线l与圆C相交答案相交5(xx广东)已知两曲线参数方程分别为(0)和(tR),它们的交点坐标为_解析由(0)得,y21(y0)由(tR)得,xy2,5y416y2160.解得:y2或y24(舍去)则xy21又0,得交点坐标为.答案考向一参数方程与普通方程的互化【例1】把下列参数方程化为普通方程:(1)(2)审题视点 (1)利用平方关系消参数;(2)代入消元法消去t.解(1)由已知由三角恒等式cos2 sin21, 可知(x3)2(y2)21,这就是它的普通方程(2)由已知t2x2,代入y5t中,得y5(2x2),即xy50就是它的普通方程 参数方程化为普通方程:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,参数方程通过代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围【训练1】 (xx陕西)参数方程(为参数)化成普通方程为_解析由得 22得:x2(y1)21.答案x2(y1)21考向二直线与圆的参数方程的应用【例2】已知圆C:(为参数)和直线l:(其中t为参数,为直线l的倾斜角)(1)当时,求圆上的点到直线l距离的最小值;(2)当直线l与圆C有公共点时,求的取值范围审题视点 (1)求圆心到直线l的距离,这个距离减去圆的半径即为所求;(2)把圆的参数方程化为直角坐标方程,将直线的参数方程代入得关于参数t的一元二次方程,这个方程的0.解(1)当时,直线l的直角坐标方程为xy30,圆C的圆心坐标为(1,0),圆心到直线的距离d,圆的半径为1,故圆上的点到直线l距离的最小值为1.(2)圆C的直角坐标方程为(x1)2y21,将直线l的参数方程代入圆C的直角坐标方程,得t22(cos sin )t30,这个关于t的一元二次方程有解,故4(cos sin )2120,则sin2,即sin或sin .又0,故只能sin,即,即. 如果问题中的方程都是参数方程,那就要至少把其中的一个化为直角坐标方程【训练2】 已知直线l的参数方程为(参数tR),圆C的参数方程为(参数0,2),求直线l被圆C所截得的弦长解由消参数后得普通方程为2xy60,由消参数后得普通方程为(x2)2y24,显然圆心坐标为(2,0),半径为2.由于圆心到直线2xy60的距离为d,所以所求弦长为2 .考向三圆锥曲线的参数方程的应用【例3】求经过点(1,1),倾斜角为135的直线截椭圆y21所得的弦长审题视点 把直线方程用参数表示,直接与椭圆联立,利用根与系数的关系及弦长公式可解决解由条件可知直线的参数方程是(t为参数),代入椭圆方程可得21,即t23t10.设方程的两实根分别为t1、t2,则由二次方程的根与系数的关系可得则直线截椭圆的弦长是|t1t2| . 普通方程化为参数方程:化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t,先确定一个关系xf(t)(或y(t),再代入普通方程F(x,y)0,求得另一关系y(t)(或xf(t)一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标)普通方程化为参数方程需要引入参数,选择的参数不同,所得的参数方程也不一样【训练3】 (xx南京模拟)过点P(3,0)且倾斜角为30的直线和曲线(t为参数)相交于A、B两点,求线段AB的长解直线的参数方程为(s为参数),又曲线(t为参数)可以化为x2y24,将直线的参数方程代入上式,得s26s100,设A、B对应的参数分别为s1,s2.s1s26,s1s210.|AB|s1s2|2.如何解决极坐标方程与参数方程的综合问题从近两年的新课标高考试题可以看出,对参数方程的考查重点是直线的参数方程、圆的参数方程和圆锥曲线的参数方程的简单应用,特别是利用参数方程解决弦长和最值等问题,题型为填空题和解答题【示例】 (本题满分10分)(xx新课标全国)在直角坐标系xOy中,曲线C1的参数方程为(为参数)M是C1上的动点,P点满足2,P点的轨迹为曲线C2.(1)求C2的方程;(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|. 第(1)问:利用代入法;第(2)问把曲线C1、曲线C2均用极坐标表示,再求射线与曲线C1、C2的交点A、B的极径即可解答示范 (1)设P(x,y),则由条件知M.由于M点在C1上,所以即从而C2的参数方程为(为参数)(5分)(2)曲线C1的极坐标方程为4sin ,曲线C2的极坐标方程为8sin .射线与C1的交点A的极径为14sin ,射线与C2的交点B的极径为28sin .所以|AB|21|2.(10分) 很多自主命题的省份在选考坐标系与参数方程中的命题多以综合题的形式命题,而且通常将极坐标方程、参数方程相结合,以考查考生的转化与化归的能力【试一试】 (xx江苏)在平面直角坐标系xOy中,求过椭圆(为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程尝试解答由题设知,椭圆的长半轴长a5,短半轴长b3,从 而c4,所以右焦点为(4,0)将已知直线的参数方程化为普通方程:x2y20.故所求直线的斜率为,因此其方程为y(x4),即x2y40.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!