2019-2020年中考专题复习:第十八讲 等腰三角形与直角三角形.doc

上传人:tian****1990 文档编号:2680076 上传时间:2019-11-28 格式:DOC 页数:14 大小:259.50KB
返回 下载 相关 举报
2019-2020年中考专题复习:第十八讲 等腰三角形与直角三角形.doc_第1页
第1页 / 共14页
2019-2020年中考专题复习:第十八讲 等腰三角形与直角三角形.doc_第2页
第2页 / 共14页
2019-2020年中考专题复习:第十八讲 等腰三角形与直角三角形.doc_第3页
第3页 / 共14页
点击查看更多>>
资源描述
2019-2020年中考专题复习:第十八讲 等腰三角形与直角三角形【重点考点例析】考点一:角的平分线例1 (xx丽水)如图,在RtABC中,A=Rt,ABC的平分线BD交AC于点D,AD=3,BC=10,则BDC的面积是 15思路分析:过D作DEBC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可解:如图,过D作DEBC于E,A=90,DAAB,BD平分ABC,AD=DE=3,BDC的面积是DEBC=103=15,故答案为:15点评:本题考查了角平分线性质和三角形的面积的应用,注意:角平分线上的点到角两边的距离相等对应训练1(xx泉州)如图,AOB=70,QCOA于C,QDOB于D,若QC=QD,则AOQ= 35135考点二:线段垂直平分线例2 (xx义乌市)如图,ADBC于点D,D为BC的中点,连接AB,ABC的平分线交AD于点O,连结OC,若AOC=125,则ABC= 70思路分析:先根据三角形的一个外角等于与它不相邻的两个内角的和列式求出C,再根据线段垂直平分线上的点到线段两端点的距离相等可得OB=OC,根据等边对等角的性质求出OBC=C,然后根据角平分线的定义解答即可解:ADBC,AOC=125,C=AOC-ADC=125-90=35,D为BC的中点,ADBC,OB=OC,OBC=C=35,OB平分ABC,A=2OBC=235=70故答案为:70点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,角平分线的定义,是基础题,准确识图并熟记各性质是解题的关键对应训练2(xx天门)如图,在ABC中,AB=AC,A=120,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A4cmB3cmC2cmD1cm2C考点三:等腰三角形性质的运用例3 (xx武汉)如图,ABC中,AB=AC,A=36,BD是AC边上的高,则DBC的度数是()A18B24C30D36思路分析:根据已知可求得两底角的度数,再根据三角形内角和定理不难求得DBC的度数解:AB=AC,A=36,ABC=ACB=7,2BD是AC边上的高,BDAC,DBC=90-72=18故选A点评:本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般对应训练3(xx云南)如图,已知ABCD,AB=AC,ABC=68,则ACD= 44344考点四:等边三角形的判定与性质例4 (xx黔西南州)如图,已知ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则E= 15度思路分析:根据等边三角形三个角相等,可知ACB=60,根据等腰三角形底角相等即可得出E的度数解:ABC是等边三角形,ACB=60,ACD=120,CG=CD,CDG=30,FDE=150,DF=DE,E=15故答案为:15点评:本题考查了等边三角形的性质,互补两角和为180以及等腰三角形的性质,难度适中对应训练4(xx黄冈)已知ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE= 4考点五:三角形中位线定理例5 (xx昆明)如图,在ABC中,点D,E分别是AB,AC的中点,A=50,ADE=60,则C的度数为()A50B60C70D80思路分析:在ADE中利用内角和定理求出AED,然后判断DEBC,利用平行线的性质可得出C解:由题意得,AED=180-A-ADE=70,点D,E分别是AB,AC的中点,DE是ABC的中位线,DEBC,C=AED=70故选C点评:本题考查了三角形的中位线定理,解答本题的关键是掌握三角形中位线定理的内容:三角形的中位线平行于第三边,并且等于第三边的一半对应训练5(xx厦门)如图,ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,OAB的周长是18厘米,则EF= 3厘米53考点六:直角三角形例6 (xx衢州)将一个有45角的三角板的直角顶点放在一张宽为3cm的纸带边沿上另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30角,如图,则三角板的最大边的长为()A3cmB6cmC3cmD6cm思路分析:过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30角所对的边等于斜边的一半,可求出有45角的三角板的直角直角边,再由等腰直角三角形求出最大边解:如图,过点C作CDAD,CD=3,在直角三角形ADC中,CAD=30,AC=2CD=23=6,又三角板是有45角的三角板,AB=AC=6,BC2=AB2+AC2=62+62=72,BC=6,故选:D点评:此题考查的知识点是含30角的直角三角形及等腰直角三角形问题,关键是先由求得直角边,再由勾股定理求出最大边对应训练6(xx重庆)如图,在ABC中,A=45,B=30,CDAB,垂足为D,CD=1,则AB的长为()A2B2 C +1D +16D考点七:勾股定理例7 (xx扬州)矩形的两邻边长的差为2,对角线长为4,则矩形的面积为 6思路分析:设矩形一条边长为x,则另一条边长为x-2,然后根据勾股定理列出方程式求出x的值,继而可求出矩形的面积解:设矩形一条边长为x,则另一条边长为x-2,由勾股定理得,x2+(x-2)2=42,整理得,x2-2x-6=0,解得:x=1+或x=1-(不合题意,舍去),另一边为:-1,则矩形的面积为:(1+)(-1)=6故答案为:6点评:本题考查了勾股定理及矩形的性质,难度适中,解答本题的关键是根据勾股定理列出等式求处矩形的边长,要求同学们掌握矩形面积的求法对应训练7(xx莆田)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2则最大的正方形E的面积是 10710【聚焦山东中考】1(xx临沂)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()AAB=ADBAC平分BCDCAB=BDDBECDEC1C2(xx枣庄)如图,ABC中,AB=AC=10,BC=8,AD平分BAC交BC于点D,点E为AC的中点,连接DE,则CDE的周长为()A20B12C14D132C3(xx淄博)如图,ABC的周长为26,点D,E都在边BC上,ABC的平分线垂直于AE,垂足为Q,ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为()A B C3D43C4(xx威海)如图,在ABC中,A=36,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()AC=2ABBD平分ABCCSBCD=SBODD点D为线段AC的黄金分割点4C5(xx莱芜)在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得MOA为等腰三角形,则满足条件的点M的个数为()A4B5C6D85C6(xx滨州)在等腰ABC中,AB=AC,A=50,则B= 656657(xx滨州)在ABC中,C=90,AB=7,BC=5,则边AC的长为 78(xx烟台)如图,ABCD的周长为36,对角线AC,BD相交于点O点E是CD的中点,BD=12,则DOE的周长为 158159(xx泰安)如图,在RtABC中,ACB=90,AB的垂直平分线DE交AC于E,交BC的延长线于F,若F=30,DE=1,则BE的长是 29210(xx烟台)如图,ABC中,AB=AC,BAC=54,BAC的平分线与AB的垂直平分线交于点O,将C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则OEC为 108度1010811(xx菏泽)我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”)已知等边三角形的边长为2,则它的“面径”长可以是 之间的任意两个实数)(写出1个即可)11,(或介于和之间的任意两个实数)12(xx威海)操作发现将一副直角三角板如图摆放,能够发现等腰直角三角板ABC的斜边与含30角的直角三角板DEF的长直角边DE重合问题解决将图中的等腰直角三角板ABC绕点B顺时针旋转30,点C落在BF上,AC与BD交于点O,连接CD,如图(1)求证:CDO是等腰三角形;(2)若DF=8,求AD的长12解;(1)由图知BC=DE,BDC=BCD,DEF=30,BDC=BCD=75,ACB=45,DOC=30+45=75,DOC=BDC,CDO是等腰三角形; (2)如图,作AGBC,垂足为点G,DHBF,垂足为点H,在RtDHF中,F=60,DF=8,DH=4,HF=4,在RtBDF中,F=60,DF=8,DB=8,BF=16,BC=BD=8,AGBC,ABC=45,BG=AG=4,AG=DH,AGDH,四边形AGHD为矩形,AD=GH=BF-BG-HF=16-4-4=12-4【备考真题过关】一、选择题1(xx成都)如图,在ABC中,B=C,AB=5,则AC的长为()A2B3C4D51D2(xx南充)如图,ABC中,AB=AC,B=70,则A的度数是()A70B55C50D402D3(xx淮安)若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为()A5B7C5或7D63B4(xx长沙)下列各图中,1大于2的是()ABCD4D5(xx宜昌)如图,在矩形ABCD中,ABBC,AC,BD相交于点O,则图中等腰三角形的个数是()A8B6C4D25C6(xx南平)如图,在ABC中,AB=AC,DEBC,ADE=48,则下列结论中不正确的是()AB=48BAED=66CA=84DB+C=966B7(xx遂宁)如图,在ABC中,C=90,B=30,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()AD是BAC的平分线;ADC=60;点D在AB的中垂线上;SDAC:SABC=1:3A1B2C3D47D8(xx铁岭)如果三角形的两边长分别是方程x2-8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是()A5.5B5C4.5D48A9(xx柳州)在ABC中,BAC=90,AB=3,AC=4AD平分BAC交BC于D,则BD的长为()A B C D 9A10(xx德宏州)在RtABC中,C=90,AB=10若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=()A5B5 C5 D610C11(xx大庆)正三角形ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则A1B1C1的面积是()A B C D 11B12(xx鄂州)如图,已知直线ab,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=2试在直线a上找一点M,在直线b上找一点N,满足MNa且AM+MN+NB的长度和最短,则此时AM+NB=()A6B8C10D1212B二、填空题13(xx徐州)若等腰三角形的顶角为80,则它的底角度数为()A80B50C40D2013B14(xx白银)等腰三角形的周长为16,其一边长为6,则另两边为 6,4或5,5146,4或5,515(xx广州)点P在线段AB的垂直平分线上,PA=7,则PB= 715716(xx长沙)如图,BD是ABC的平分线,P为BD上的一点,PEBA于点E,PE=4cm,则点P到边BC的距离为 4cm16417(xx宿迁)如图,为测量位于一水塘旁的两点A、B间的距离,在地面上确定点O,分别取OA、OB的中点C、D,量得CD=20m,则A、B之间的距离是 40m174018(xx漳州)如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是 18-19(xx泰州)如图,ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则ABD的周长为 6cm19620(xx资阳)在矩形ABCD中,对角线AC、BD相交于点O,若AOB=60,AC=10,则AB= 520521(xx吉林)如图,在平面直角坐标系中,点A,B的坐标分别为(-6,0)、(0,8)以点A为圆心,以AB长为半径画弧,交x正半轴于点C,则点C的坐标为 (4,0)21(4,0)22(xx锦州)在ABC中,AB=AC,AB的垂直平分线DE与AC所在的直线相交于点E,垂足为D,连接BE已知AE=5,tanAED=,则BE+CE= 6或16226或1623(xx无锡)如图,ABC中,AB=AC,DE垂直平分AB,BEAC,AFBC,则EFC= 45234524(xx哈尔滨)在ABC中,AB=2,BC=1,ABC=45,以AB为一边作等腰直角三角形ABD,使ABD=90,连接CD,则线段CD的长为 24或 25(xx沈阳)已知等边三角形ABC的高为4,在这个三角形所在的平面内有一点P,若点P到AB的距离是1,点P到AC的距离是2,则点P到BC的最小距离和最大距离分别是 1,7251,726(xx鄂州)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来若AB=20cm,则画出的圆的半径为 10cm2610三、解答题27(xx湘西州)如图,RtABC中,C=90,AD平分CAB,DEAB于E,若AC=6,BC=8,CD=3(1)求DE的长;(2)求ADB的面积27解:(1)AD平分CAB,DEAB,C=90,CD=DE,CD=3,DE=3;(2)在RtABC中,由勾股定理得:AB=10,ADB的面积为SADB=ABDE=103=1528(xx永州)如图,M是ABC的边BC的中点,AN平分BAC,BNAN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求ABC的周长28解:(1)在ABN和ADN中,ABNADN,BN=DN(2)ABNADN,AD=AB=10,DN=NB,又点M是BC中点,MN是BDC的中位线,CD=2MN=6,故三角形ABC的周长=AB+BC+CD+AD=10+15+6+10=41
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!