2019-2020年高考数学大一轮复习 9.6双曲线学案 理 苏教版.doc

上传人:tian****1990 文档编号:2623936 上传时间:2019-11-28 格式:DOC 页数:11 大小:262.50KB
返回 下载 相关 举报
2019-2020年高考数学大一轮复习 9.6双曲线学案 理 苏教版.doc_第1页
第1页 / 共11页
2019-2020年高考数学大一轮复习 9.6双曲线学案 理 苏教版.doc_第2页
第2页 / 共11页
2019-2020年高考数学大一轮复习 9.6双曲线学案 理 苏教版.doc_第3页
第3页 / 共11页
点击查看更多>>
资源描述
2019-2020年高考数学大一轮复习 9.6双曲线学案 理 苏教版导学目标: 1.了解双曲线的定义、几何图形和标准方程,知道它们的简单几何性质.2.理解数形结合的思想自主梳理1双曲线的概念平面内到两个定点F1、F2(F1F22c0)的距离的差的绝对值等于常数2a(2a0,c0;(1)当_时,P点的轨迹是_;(2)当_时,P点的轨迹是_;(3)当_时,P点不存在2双曲线的标准方程和几何性质标准方程1(a0,b0)1(a0,b0)图形性质范围xa或xa,yRxR,ya或ya对称性对称轴:坐标轴对称轴:坐标轴对称中心:原点对称中心:原点顶点顶点坐标:A1(a,0),A2(a,0)顶点坐标:A1(0,a),A2(0,a)渐近线yxyx离心率e,e(1,),其中c实虚轴线段A1A2叫做双曲线的实轴,它的长A1A22a;线段B1B2叫做双曲线的虚轴,它的长B1B22b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a、b、c的关系c2a2b2 (ca0,cb0)3.实轴长和虚轴长相等的双曲线为_,其渐近线方程为_,离心率e为_自我检测1(xx安徽改编)双曲线2x2y28的实轴长是_2已知双曲线1 (b0)的左、右焦点分别为F1、F2,其中一条渐近线方程为yx,点P(,y0)在该双曲线上,则_.3(xx课标全国改编)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为_4已知点(m,n)在双曲线8x23y224上,则2m4的范围是_5已知A(1,4),F是双曲线1的左焦点,P是双曲线右支上的动点,求PFPA的最小值探究点一双曲线的定义及应用例1已知定点A(0,7),B(0,7),C(12,2),以C为一个焦点作过A,B的椭圆,求另一焦点F的轨迹方程变式迁移1已知动圆M与圆C1:(x4)2y22外切,与圆C2:(x4)2y22内切,求动圆圆心M的轨迹方程探究点二求双曲线的标准方程例2已知双曲线的一条渐近线方程是x2y0,且过点P(4,3),求双曲线的标准方程变式迁移2(xx安庆模拟)已知双曲线与椭圆1的焦点相同,且它们的离心率之和等于,则双曲线的方程为_探究点三双曲线几何性质的应用例3已知双曲线的方程是16x29y2144.(1)求此双曲线的焦点坐标、离心率和渐近线方程;(2)设F1和F2是双曲线的左、右焦点,点P在双曲线上,且PF1PF232,求F1PF2的大小变式迁移3已知双曲线C:y21.(1)求双曲线C的渐近线方程;(2)已知M点坐标为(0,1),设P是双曲线C上的点,Q是点P关于原点的对称点记,求的取值范围方程思想例(14分)过双曲线1的右焦点F2且倾斜角为30的直线交双曲线于A、B两点,O为坐标原点,F1为左焦点(1)求AB;(2)求AOB的面积;(3)求证:AF2BF2AF1BF1.多角度审题(1)要求弦长AB需要A、B两点坐标或设而不求利用弦长公式,这就需要先求直线AB;(2)在(1)的基础上只要求点到直线的距离;(3)要充分联想到A、B两点在双曲线上这个条件【答题模板】(1)解由双曲线的方程得a,b,c3,F1(3,0),F2(3,0)直线AB的方程为y(x3)设A(x1,y1),B(x2,y2),由得5x26x270.4分x1x2,x1x2,AB|x1x2|.8分(2)解直线AB的方程变形为x3y30.原点O到直线AB的距离为d.SAOBABd.10分(3)证明如图,由双曲线的定义得AF2AF12,BF1BF22,AF2AF1BF1BF2,即AF2BF2AF1BF1.14分【突破思维障碍】本题利用方程的思想,把过点A的直线方程与双曲线方程联立,从而转化为关于x的一元二次方程,利用韦达定理求解,这种思想在解析几何中经常用到【易错点剖析】在直线和双曲线相交的情况下解题时易忽视消元后的一元二次方程的判别式0,而导致错解1区分双曲线中的a,b,c大小关系与椭圆中a,b,c的大小关系,在椭圆中a2b2c2,而在双曲线中c2a2b2;双曲线的离心率大于1,而椭圆的离心率e(0,1)2双曲线1 (a0,b0)的渐近线方程是yx,1 (a0,b0)的渐近线方程是yx.3双曲线标准方程的求法:(1)定义法,根据题目的条件,判断是否满足双曲线的定义,若满足,求出相应的a、b、c,即可求得方程(2)待定系数法,其步骤是:定位:确定双曲线的焦点在哪个坐标轴上;设方程:根据焦点的位置设出相应的双曲线方程;定值:根据题目条件确定相关的系数(满分:90分)一、填空题(每小题6分,共48分)1已知M(2,0)、N(2,0),PMPN3,则动点P的轨迹是_2设点P在双曲线1上,若F1、F2为双曲线的两个焦点,且PF1PF213,则F1PF2的周长为_3(xx苏州模拟)过双曲线1 (a0,b0)的右焦点F作圆x2y2a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率为_4双曲线1的左焦点为F1,左、右顶点分别为A1、A2,P是双曲线右支上的一点,则分别以PF1和A1A2为直径的两圆的位置关系是_5(xx山东改编)已知双曲线1(a0,b0)的两条渐近线均和圆C:x2y26x50相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为_6(xx上海)设m是常数,若点F(0,5)是双曲线1的一个焦点,则m_.7设圆过双曲线1的一个顶点和一个焦点,圆心在此双曲线上,则此圆心到双曲线中心的距离为_8(xx南通模拟)已知圆C:x2y26x4y80.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为_二、解答题(共42分)9(14分)根据下列条件,求双曲线方程:(1)与双曲线1有共同的渐近线,且经过点(3,2);(2)与双曲线1有公共焦点,且过点(3,2)10(14分)(xx广东)设圆C与两圆(x)2y24,(x)2y24中的一个内切,另一个外切(1)求圆C的圆心轨迹L的方程;(2)已知点M(,),F(,0),且P为L上动点,求|MP|FP|的最大值及此时点P的坐标11(14分)(xx四川)已知定点A(1,0),F(2,0),定直线l:x,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N.(1)求E的方程;(2)试判断以线段MN为直径的圆是否过点F,并说明理由学案50双曲线答案自主梳理1双曲线焦点焦距(1)ac3.等轴双曲线yx自我检测14解析2x2y28,1,a2,2a4.203.解析设双曲线的标准方程为1(a0,b0),由于直线l过双曲线的焦点且与对称轴垂直,因此直线l的方程为l:xc或xc,代入1得y2b2(1),y,故AB,依题意4a,2,e212,e.4(,4242,)5解设双曲线的右焦点为F1,则由双曲线的定义可知PF2aPF14PF1,PFPA4PF1PA.当满足PF1PA最小时,PFPA最小由双曲线的图象可知当点A、P、F1共线时,满足PF1PA最小,易求得最小值为AF15,故所求最小值为9.课堂活动区例1解题导引求曲线的轨迹方程时,应尽量地利用几何条件探求轨迹的曲线类型,从而再用待定系数法求出轨迹的方程,这样可以减少运算量,提高解题速度与质量在运用双曲线的定义时,应特别注意定义中的条件“差的绝对值”,弄清所求轨迹是整条双曲线,还是双曲线的一支,若是一支,是哪一支,以确保轨迹的纯粹性和完备性解设F(x,y)为轨迹上的任意一点,因为A,B两点在以C,F为焦点的椭圆上,所以FACA2a,FBCB2a(其中a表示椭圆的长半轴)所以FACAFBCB.所以FAFBCBCA2.所以FAFB2.由双曲线的定义知,F点在以A,B为焦点,2为实轴长的双曲线的下半支上所以点F的轨迹方程是y21 (y1)变式迁移1解设动圆M的半径为r,则由已知得,MC1r,MC2r,MC1MC22,又C1(4,0),C2(4,0),C1C28.20时,焦点在x轴上;当0时,焦点在y轴上解方法一双曲线的一条渐近线方程为x2y0,当x4时,y20,b0),且c4,所以ac2,a24,b2c2a212,于是双曲线的方程为1.例3解题导引双曲线问题与椭圆问题类似,因而研究方法也有许多相似之处,如利用“定义”“方程观点”“直接法或待定系数法求曲线方程”“数形结合”等解(1)由16x29y2144,得1,a3,b4,c5.焦点坐标F1(5,0),F2(5,0),离心率e,渐近线方程为yx.(2)|PF1PF2|6,cosF1PF20,F1PF290.变式迁移3解(1)因为a,b1,且焦点在x轴上,所以渐近线方程为yx0,yx0.(2)设P点坐标为(x0,y0),则Q的坐标为(x0,y0),(x0,y01)(x0,y01)xy1x2.|x0|,的取值范围是(,1课后练习区1双曲线右支2.223.解析如图所示,在RtOPF中,OMPF且M为PF的中点,所以OMF也是等腰直角三角形,所以有OFOM,即ca.所以e.4内切5.1解析双曲线1的渐近线方程为yx,圆C的标准方程为(x3)2y24,圆心为C(3,0)又渐近线方程与圆C相切,即直线bxay0与圆C相切,2,5b24a2.又1的右焦点F2(,0)为圆心C(3,0),a2b29.由得a25,b24.双曲线的标准方程为1.616解析由已知条件有52m9,所以m16.7.解析设圆心P(x0,y0),则|x0|4,代入1,得y,OP.8.1解析可知双曲线仅与x轴有交点,即x26x80,x2或x4,即c4,a2.1.9解(1)方法一由题意可知所求双曲线的焦点在x轴上,(2分)设双曲线的方程为1,由题意,得解得a2,b24.(4分)所以双曲线的方程为x21.(7分)方法二设所求双曲线方程 (0),将点(3,2)代入得,(4分)所以双曲线方程为,即x21.(7分)(2)设双曲线方程为1.由题意c2.又双曲线过点(3,2),1.又a2b2(2)2,a212,b28.故所求双曲线的方程为1.(14分)10解(1)设圆C的圆心坐标为(x,y),半径为r.圆(x)2y24的圆心为F1(,0),半径为2,圆(x)2y24的圆心为F(,0),半径为2.由题意得或|CF1CF|4.(4分)F1F24.圆C的圆心轨迹是以F1(,0),F(,0)为焦点的双曲线,其方程为y21.(7分)(2)由图知,MPFPMF,当M,P,F三点共线,且点P在MF延长线上时,MPFP取得最大值MF,(9分)且MF2.(10分)直线MF的方程为y2x2,与双曲线方程联立得整理得15x232x840.解得x1(舍去),x2.此时y.(12分)当|MPFP|取得最大值2时,点P的坐标为(,)(14分)11解(1)设P(x,y),则2,化简得x21(y0)(5分)(2)当直线BC与x轴不垂直时,设BC的方程为yk(x2) (k0),与双曲线方程x21联立消去y,得(3k2)x24k2x(4k23)0.由题意知,3k20且0.(7分)设B(x1,y1),C(x2,y2),则x1x2,x1x2,y1y2k2(x12)(x22)k2k2.因为x1,x21,所以直线AB的方程为y(x1)因此M点的坐标为,.同理可得.因此0.(11分)当直线BC与x轴垂直时,其方程为x2,则B(2,3),C(2,3)AB的方程为yx1,因此M点的坐标为,.同理可得.因此0.(13分)综上,0,故FMFN.故以线段MN为直径的圆过点F.(14分)
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!