2019-2020年高中数学第一章集合与函数概念1.1.2集合间的基本关系教案新人教A版必修1.doc

上传人:tia****nde 文档编号:2617525 上传时间:2019-11-28 格式:DOC 页数:6 大小:35.50KB
返回 下载 相关 举报
2019-2020年高中数学第一章集合与函数概念1.1.2集合间的基本关系教案新人教A版必修1.doc_第1页
第1页 / 共6页
2019-2020年高中数学第一章集合与函数概念1.1.2集合间的基本关系教案新人教A版必修1.doc_第2页
第2页 / 共6页
2019-2020年高中数学第一章集合与函数概念1.1.2集合间的基本关系教案新人教A版必修1.doc_第3页
第3页 / 共6页
点击查看更多>>
资源描述
2019-2020年高中数学第一章集合与函数概念1.1.2集合间的基本关系教案新人教A版必修1(一)教学目标;1知识与技能(1)理解集合的包含和相等的关系.(2)了解使用Venn图表示集合及其关系.(3)掌握包含和相等的有关术语、符号,并会使用它们表达集合之间的关系.2过程与方法(1)通过类比两个实数之间的大小关系,探究两个集合之间的关系.(2)通过实例分析,获知两个集合间的包含与相等关系,然后给出定义.(3)从自然语言,符号语言,图形语言三个方面理解包含关系及相关的概念.3情感、态度与价值观(1)培养学生积极参与,合作交流的主体意识,在知识的探索和发现过程中,培养学生学习数学的兴趣。 (2)应用类比思想,在探究两个集合的包含和相等关系的过程中,培养学习的辨证思想,提高学生用数学的思维方式去认识世界,尝试解决问题的能力.(二)教学重点与难点 重点:子集,真子集的概念; 难点:元素与子集,即属于与包含之间的区别.(三)教学方法:启发式教学法、课堂讨论法和师生共同探究法(四)教学过程教学环节教学内容师生互动设计意图创设情境提出问题思考:元素与集合有属于,不属于关系,实数有相等,大小关系,类比实数之间的关系,联想集合之间是否具备类似的关系.师:对两个数a、b,应有ab或a = b或ab.而对于两个集合A、B它们也存在类似的关系.类比生疑,引入课题概念形成分析示例:示例1:考察下列三组集合,并说明两集合内存在怎样的关系(1)A = 1,2,3 B = 1,2,3,4,5(2)A = 岢岚中学230班全体女生B = 岢岚中学230班的全体学生(3)C = x | x是菱形D = x | x是平行四边形(4)A=x| x2, B=x| x1; 1子集:一般地,对于两个集合A、B,如果A中任意一个元素都是B的元素,称集合A是集合B的子集,记作,读作:“A含于B”(或B包含A)Venn图用平面上封闭曲线的内部代表集合.如果,则Venn图表示为:AB生:实例的共同特点是A的每一个元素都是B的元素.师:具备这些实例的两个集合之间关系的称A是B的子集,那么A是B的子集怎样定义呢?学生合作:讨论归纳子集的共性.师生合作得出子集概念的数学定义.0 0, 正方形 矩形,等边三角形 三角形梯形 平行四边形,x|-1x5 x|2x4并引导学生类比数与数之间的“”“”符号来记忆“”“”符号。通过实例的共性探究、感知子集概念,通过归纳共性,形成子集的概念.初步了解子集概念.通过几个小练习巩固刚得到的概念并区分,等符号概念深化示例1:考察下列各组集合,并指明两集合的关系:(1)A = Z,B = N;(2)A=x| x23x+2=0,B =1,2.1集合相等:若,且,则A=B.2真子集如果集合,但存在元素xB,且xA,称A是B的真子集,记作A B (或B A).示例3 考察下列集合. 并指出集合中的元素是什么?(1)A = x | x2 + 1 = 0,xR.(2)B=x |x是我们班上身高超过2米的同学3空集称不含任何元素的集合为空集,记作.规定:空集是任何集合的子集;空集是任何非空集合的真子集.示例1 学生思考并回答.生:(1) (2)A = B师:进一步考察(1)不难发现:A的任意元素都在B中,而B中存在元素不在A中,具有这种关系时,称A是B的真子集.示例3 学生思考并回答.生:没有元素师:对于类似(2)的集合称这样的集合为空集.师生合作归纳空集的定义.再次感知子集相等关系,加深对概念的理解,并利用韦恩图从“形”的角度理解包含关系,层层递进形成真子集、空集的概念.能力提升一般结论:.若,则.A = B,且.师:若aa,类比.若ab,bc,则ac类比.若,则.师生合作完成:(1)对于集合A,显然A中的任何元素都在A中,故.(2)已知集合,同时,即任意xAxBxC,故.升华并体会类比数学思想的意义.应用举例例1(1)写出集合a、b的所有子集;(2)写出集合a、b、c的所有子集;(3)写出集合a、b、c、d的所有子集;一般地:集合A含有n个元素则A的子集共有2n个. A的真子集共有2n 1个.学习练习求解,老师点评总结.师:根据问题(1)、(2)、(3),子集个数的探究,提出问题:已知A = a1,a2,a3an,求A的子集共有多少个?通过练习加深对子集、真子集概念的理解.培养学生归纳能力.课堂练习教材第7页2、3题学习练习求解,老师点评总结.通过练习加深对子集、真子集概念的理解.培养学生分析解决问题能力.归纳总结子集:任意xAxB真子集:A B 任意xAxB,但存在x0B,且x0A.集合相等:A = B且空集():不含任何元素的集合性质:,若A非空,则 A.,.师生合作共同归纳总结交流完善.师:请同学合作交流整理本节知识体系引导学生整理知识,体会知识的生成,发展、完善的过程.课后作业1.1 导学案学生独立完成巩固基础提升能力(5) 板书设计1.1.2 集合间的基本关系1 集合间的基本关系 3 典型例题 课堂练习包含:相等: 课堂小结真子集: 课后作业2 Venn图(六)课后反思备选训练题例1 能满足关系a,bPa,b,c,d,e的集合P的数目是( )A8个B6个C4个D3个例2 已知A = 0,1且B = x |,求B.例3 设集合A = x y,x + y,xy,B = x2 + y2,x2 y2,0,且A = B,求实数x和y的值及集合A、B.例4 设A = x | x2 8x + 15 = 0,B = x | ax 1 = 0,若,求实数a组成的集合,并写出它的所有非空真子集.例5 .判断如下集合A与B之间有怎样的包含或相等关系:(1)A=x|x=2k-1,kZ,B=x|x=2m+1,mZ;(2)A=x|x=2m,mZ,B=x|x=4n,nZ.例6 .集合A=x|-2x5,B=x|m+1x2m-1,(1)若BA,求实数m的取值范围;(2)当xZ时,求A的非空真子集个数;【补充练习】1.判断正误:(1)空集没有子集. ( )(2)空集是任何一个集合的真子集. ( )(3)任一集合必有两个或两个以上子集. ( )(4)若BA,那么凡不属于集合A的元素,则必不属于B. ( )2.集合A=x|-1x3,xZ,写出A的真子集.3.(1)下列命题正确的是 ( )A.无限集的真子集是有限集B.任何一个集合必定有两个子集C.自然数集是整数集的真子集D.1是质数集的真子集(2)以下五个式子中,错误的个数为 ( )10,1,2 1,-3=-3,1 0,1,21,0,2 0,1,2 0A.5 B.2 C.3 D.4(3)M=x|3x4,a=,则下列关系正确的是 ( )A.aM B.aM C.aM D.aM备注:1、格式必须规范 2、六个实例可根据学生实际情形一起给出,一次性得出子集、真子集、集合相等 概念,也可分步给出逐步归纳相关概念。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!