2019-2020年高中化学 晶体的点阵结构和晶体的性质竞赛教案.doc

上传人:tian****1990 文档编号:2614673 上传时间:2019-11-28 格式:DOC 页数:16 大小:349.50KB
返回 下载 相关 举报
2019-2020年高中化学 晶体的点阵结构和晶体的性质竞赛教案.doc_第1页
第1页 / 共16页
2019-2020年高中化学 晶体的点阵结构和晶体的性质竞赛教案.doc_第2页
第2页 / 共16页
2019-2020年高中化学 晶体的点阵结构和晶体的性质竞赛教案.doc_第3页
第3页 / 共16页
点击查看更多>>
资源描述
2019-2020年高中化学 晶体的点阵结构和晶体的性质竞赛教案【7.1】若平面周期性结构系按下列单位并置重复堆砌而成,请画出它们的点阵素单位,并写出每个素单位中白圈和黑圈的数目。解:用实线画出素单位示于图8.1(a)。各素单位黑点数和圈数列于下表:图8.1(a)号数1234567黑点数目1111024圈数目1112313【7.2】层状石墨分子中键长为142,试根据它的结构画出层型石墨分子的原子分布图,画出二维六方素晶胞,用对称元素的图示记号标明晶胞中存在的全部六重轴,并计算每一个晶胞的面积、晶胞中包含的原子数和键数。解:石墨层型分子结构示于图8.2(a),晶胞示于图8.2(b),在晶胞中六重轴位置示于图8.2(c),图中数字单位为pm。图8.2 石墨层型分子的结构由图(a)可见,在层型石墨分子结构中,六元环中心具有六重轴对称性,而每个C原子则具有六重反轴对称性。晶胞边长a和b可按下式计算: 晶胞面积可按下式计算; 晶胞中有2个C原子,3个CCN键。【7.3】画出层状石墨分子的点阵素单位及石墨晶体的空间点阵素单位(参照图8.1.4),分别说明它们的结构基元。解:按上题可得层型石墨分子的晶胞结构,示于图8.3(a),它的点阵素单位示于图8.3(b),结构基元中含2个C原子。石墨晶体的晶胞示于图8.3(c),点阵单位示于图8.3(d)。结构基元中含4个C原子。图8.3 石墨的结构【7.4】有一型晶体,晶胞中和的坐标分别为和。指明该晶体的结构基元。解:不论该晶体属于哪一个晶系,均为简单的空间点阵,结构基元为AB。【7.5】下表给出由射线衍射法测得一些链型高分子的周期。请根据原子的立体化学,画出这些聚合物的一维结构;找出他们的结构基元;画出相应的直线点阵;比较这些聚合物链周期大小,并解释原因。高分子化学式链周期聚乙烯252聚乙烯醇252聚氯乙烯510聚偏二氯乙烯470解:依次画出这些高分子的结构于下:在聚乙烯,聚乙烯醇和聚氯乙烯分子中,C原子以杂化轨道成键,呈四面体构型,CC键长154pm,为,全部C原子都处在同一平面上,呈伸展的构象。重复周期长度前两个为252pm,这数值正好等于:聚氯乙烯因Cl原子的范德华半径为184pm,需要交错排列,因而它的周期接近252pm的2倍。聚偏二氯乙烯因为同一个C原子上连接了2个Cl原子,必须改变CCC键的伸展构象,利用单键可旋转的性质,改变扭角,分子中的C 原子不在一个平面上,如图所示。这时因碳链扭曲而使周期长度缩短至470pm。高分子立体结构结构基元聚乙烯聚乙烯醇聚氯乙烯聚偏二氯乙烯【7.6】有一组点,周期地分布于空间,其平行六面体单位如右下图所示,问这一组点是否构成一点阵?是够构成一点阵结构?请画出能够概括这一组点的周期性的点阵及其素单位。 解:不能将这一组点中的每一个点都作为点阵点,因为它不符合点阵的要求,所以这一组点不能构成一点阵。但这组点是按平行六面体单位周期地排布于空间,它构成一点阵结构。能概括这组点的点阵素单位如图8.6(b)。图8.6【7.7】列表比较晶体结构和分子结构的对称元素和对称操作。晶体结构比分子结构增加了哪几类对称元素和对称操作?晶体结构的对称元素和对称操作受到哪些限制?原因是什么?解:分子对称性晶体对称性 (1)旋转操作旋转轴 (2)反映操作镜面 (3)反演操作对称中心 (4)旋转反演操作反轴(5)平行操作点阵(6)螺旋旋转操作螺旋轴(7)反映滑移操作滑移面由表可见,晶体结构比分子结构增加了(5)(7)3类对称元素和对称操作。晶体结构因为是点阵结构,其对称元素和对称操作要受到点阵制约,对称轴轴次为1,2,3,4,6。螺旋轴和滑移面中的滑移量只能为点阵结构所允许的几种数值。【7.8】根据点阵的性质作图证明晶体中不可能存在的五重对称轴。解:若有五重轴,由该轴联系的5个点阵点的分布如图8.8。连接AB矢量,将它平移到E,矢量一端为点阵点E,另一端没有点阵点,不合点阵的定义,所以晶体的点阵结构不可能存在五重对称轴。图8.8【7.9】分别写出晶体中可能存在的独立的宏观对称元素和微观对称元素,并说明它们之间的关系。解:宏观对称元素有; 。微观对称元素有: 点阵。微观对称元素比宏观对称元素多相应轴次的螺旋轴和相同方向的滑移面,而且通过平移操作其数目是无限的。【7.10】晶体的宏观对称操作集合可构成多少个晶体学点群?这些点群分属于多少个晶系?这些晶系共有多少种空间点阵型式?晶体的微观对称操作的集合可构成多少个空间群?这些空间群分属于多少个点群?解:32个晶体学点群,7个晶系,14种空间点阵型式,230个空间群,这些空间群分属于32个点群。【7.11】从某晶体中找到、和等对称元素,则该晶体所属的晶系和点群各是什么?解:六方晶系,因为。点群是。【7.12】六方晶体可按六方柱体(八面体)结合而成,但为什么六方晶胞不能划分六方柱体?解:晶胞一定是平行六面体,它的不相平行的3条边分别和3个单位平移矢量平行。六方柱体不符合这个条件。【7.13】按下图堆砌而成的结构为什么不是晶体中晶胞并列排列的结构?解:晶胞并置排列时,晶胞顶点为8个晶胞所共有。对于二维结构,晶胞顶点应为4个晶胞共有,才能保证晶胞顶点上的点有着相同的周围环境。今将团中不同位置标上A,B如图8.13b所示,若每个矩形代表一个结构基元,由于A点和B点的周围环境不同(A点上方没有连接线、B点下方没有连接线),上图的矩形不是品胞。晶胞可选连接A点的虚线所成的单位,形成由晶胞并置排列的结构,如图8.13b所示。图8.13a 图8.13b【7.14】已知金刚石立方晶胞的晶胞参数。写出其中碳原子的分数坐标,并计算键长和晶体密度。解:金刚石中碳原子分数坐标为:。CC键长可由及两个原子的距离求出;因为立方金刚石 密度 【7.15】四方晶系的金红石晶体结构中,晶胞参数,;原子分数坐标为:,。计算值相同的键长。解:z值相同的TiO键是Ti和O之间的键,其键长为: 【7.16】许多由有机分子堆积成的晶体属于单斜晶系,其空间群记号为,说明该记号中各符号的意义。利用图8.3.2中空间群对称元素的分布。推出晶胞中和原子(0.15,0.25,0.10)属同一等效点系的其他3个原子的坐标,并作图表示。解:在空间群记号中,为点群Schonflies记号,为该点群的第5号空间群,“”记号是空间群的国际记号,P为简单点阵,对单斜晶系平行b轴有螺旋轴,垂直b轴有c滑移面。该空间群对称元素分布如下:b轴从纸面向上1(0.15,0.25,0.10);3(0.15,0.25,0.60);2(0.85,0.75,0.40);4(0.85,0.75,0.90)图8.16【7.17】写出在3个坐标轴上的截距分别为-2a,-3b和-3c的点阵面的指标;写出指标为(321)的点阵面在3个坐标轴上的截距之比。解:点阵面指标为三个轴上截数倒数的互质整数之比,即,点阵面指标为或。 指标为的点阵面在三个轴上的截距之比为:2a:3b:6c。【7.18】标出下面点阵结构的晶体指标,。每组面话出3条相邻的直线表示。解:图8.18【7.19】金属镍的立方晶胞参数,试求,。解:立方晶系的衍射指标hkl和衍射面间距的关系为: 故: 【7.20】在直径为的相机中,用射线拍金属铜的粉末图。从图上量得8对粉末线的值为:44.0,51.4,75.4,90.4,95.6,117.4,137.0,145.6。试计算下表各栏数值,求出晶胞参数,确定晶体点阵型式。序号解:由L求可按下式: 由求可用第1条线的值去除各线的值,然后乘一个合适的整数使之都接近整数值。由Bragg公式以及立方晶系的 可得: 按上述公式计算所得结果列于表8.20。 表8.20序号144.022.00.1401110.04666251.425.70.1882000.04700375.437.70.3742200.04675490.445.20.5033110.04573595.647.80.5492220.045756117.458.70.7304000.045627137.068.50.8663310.045578145.672.80.9134200.04565取号线的的值求平均值得: 将代入,得: 从衍射指标符合全为奇数或全为偶数的规律,得空间点阵型式为面心立方。【7.21】已知,用拍金属钽的粉末图,所得各粉末线的值列下表。试判断钽所属晶系、点阵型式,将上述粉末线指标化,求出晶胞参数。序号射线序号射线10.1126570.7631220.2223880.8705430.3315590.8756340.44018100.9782650.54825110.9833560.65649解:由解8.20体可知,对立方晶系: 用第1号衍射线的值遍除各线,即可得到的比值。再根据此比值加以调整,使之成为合理的整数,即可求出衍射指标。从而进一步求得所需数值如表8.21。 表8.21序号用1号遍除因出现7,以2倍之10.1126512110324.920.2223824200327.030.3315536211327.040.4401848220328.750.54825510310329.360.65849612222329.670.76312714312330.280.87054816400330.390.87563816400330.0100.97826918411330.5110.98335918411330.3 因不可能有7,故乘以2,都得到合理的整数,根据此整数即得衍射指标如表所示。因能用立方晶系的关系式指标化全部数据,所以晶体应属于立方晶系。而所得指标全为偶数,故为体心点阵型式。再用下一公式计算晶胞参数: 从第1号至第7号值用,第8号和第10号用,第9号和第11号用,计算所得数据列于表中。利用粉末法求晶胞参数,高角度比较可靠,可以作的图,外推至,求得;也可以用最后两条线求平均值,得: 【7.22】什么是晶体衍射的两个要素?它们与晶体结构(例如晶胞的两要素)有何对应关系?写出能够阐明这些对应关系的表达式,并指出式中各符号的意思。晶体衍射的两要素在射线粉末衍射图上有何反映?解:晶体衍射的两个要素是:衍射方向和衍射强度,它们和晶胞的两要素相对应。衍射方向和晶胞参数相对应,衍射强度和晶胞中原子坐标参数相对应,前者可用Laue方程表达,后者可用结构因子表达:Laue方程:反映了晶胞大小和空间取向;和反映了衍射X射线和入射X射线的方向;式中为衍射指标,为X射线波长。衍射强度和结构因子成正比,而结构因子和晶胞中原子种类(用原子散射因子表示)及其坐标参数有关; 粉末衍射图上衍射角(或)即衍射方向,衍射强度由计算器或感光胶片记录下来。【7.23】写出方程的两种表达形式,说明与,与之间的关系以及衍射角随衍射级数的变化。解:Bragg方程的两种表达形式为: 式中()为点阵面指标,3个数互质;而为衍射指标,3个数不要求互质,可以有公因子n,如123,246,369等。为点阵面间距;为衍射面间距,它和衍射指标中的公因子n有关:。按前一公式,对于同一族点阵面()可以有n个不同级别的衍射,即相邻两个面之间的波程差可为,而相应的衍射角为,。【7.24】为什么用射线粉末法测定晶胞参数时常用高角度数据(有时还根据高角度数据外推至),而测定超细晶粒的结构时要用低角度数据(小角散射)?解:按晶面间距的相对误差公式可见随着值增大,值变小,测量衍射角的偏差对晶面间距或晶胞参数的影响减小,故用高角度数据。 小晶粒衍射线变宽,利用求粒径的公式: 超细晶粒值很小,衍射角增大时,变小,宽化(即)增加。故要用低角度数据。另外,原子的散射因子随的增大而减小,细晶粒衍射能力已很弱了。为了不使衍射能力降低,应在小角度(值小)下收集数据。【7.25】用射线衍射法测定的晶体结构,衍射100和200哪个强度大?为什么?解:200比100大,其原因可从图8.25中看出。图8.25示出CsCl立方晶胞投影图,。在衍射100中,和相差半个波长,强度互相抵消减弱;在衍射200中,和相差1个波长,互相加强。图8.25【7.26】用射线测得某晶体的衍射图,从中量得以下数据,试查PDF卡片,鉴定此晶体可能是什么。27.331.845.553.956.666.375.518100805212020解:利用PDF卡片鉴定晶体时,需先把衍射角数据换算成值()如下:()27.331.845.553.956.666.375.5326.7281.4199.4170.1162.6141.0125.918100805212020按这组值查表,得知它为NaCl晶体。【7.27】金属铝属立方晶系,用射线摄取333衍射,由此计算晶胞参数。解:立方晶系和的关系为: 由求得为: 【7.28】分子既可形成单斜硫,也可形成正交硫。用射线衍射法(射线)测得某正交硫晶体的晶胞参数,。已知该硫磺的密度为,的相对原子质量为32。(a) 计算每个晶胞中分子的数目;(b) 计算224衍射线的角;(c) 写出气相中分子的全部独立的对称元素。解:(a)按求晶胞中分子数Z的公式,得: (b)按正交晶系公式:代入有关数据,得: (c)分子属于点群,独立的对称元素有:。【7.29】硅的晶体结构和金刚石相似。下测得其立方晶胞参数,密度为,的相对原子质量为28.0854,计算常数。解;按求Avogadro数的公式,得: 【7.30】已知某立方晶系晶体,其密度为,相对分子质量为234。用射线在直径粉末相机中拍粉末图,从中量得衍射220的衍射线间距为,求晶胞参数及晶胞中分子数。解:用下面公式由L值可求得值: 【7.31】已知晶体立方晶胞参数,实验测得衍射111的衍射角,求实验所用射线的波长。解: 【7.32】核糖核酸酶蛋白质晶体的晶体学数据如下:晶胞体积,晶胞中分子数6,晶体密度。如蛋白质在晶体中占68%(质量),计算该蛋白质相对分子质量。解: 【7.33】晶体具有型结构,晶体密度为,的相对原子质量和的相对原子质量分别为40.08和32.06。试回答下列问题:(a) 指出100.110.111.200.210.211.220.222衍射中哪些是允许的?(b) 计算晶胞参数;(c) 计算辐射的最小可观测角。解:(a) NaCl型结构的点阵型式为面心立方,允许存在的衍射中三个数应为全奇或全偶,即111,200,220,222出现。(b) 为求晶胞参数,先求晶胞体积V: (c) 最小可观测的衍射为111。 【7.34】微晶是乙烯,丙烯聚合催化剂的活性组分。用射线粉末法(线)测定其平均晶粒度时所得数据如下表所示,请有公式(8.4.23)估算该微晶大小。0010.401.31000.551.5解:利用求粒径的公式得001衍射:弧度 100衍射:弧度 【7.35】冰为立方晶系晶体,晶胞参数,晶胞中含,括弧内为原子分数坐标(0,0,0;0,0,0.375;2/3,1/3,1/2;2/3,1/3,0.875),请根据此计算或说明:(a) 计算冰的密度;(b) 计算氢键键长;(c) 冰的点阵式是什么?结构单元包含哪些内容?解:(a) 密度 (b) 坐标为(0,0,0)和(0,0,0.375)的两个O原子间的距离即为氢键键长r: (c)冰的点阵形式是简单六方点阵(hP),整个晶胞包含的内容即4H2O为结构基元。【7.36】某晶体型衍射中系统消光,试说明在什么方向有什么样的滑移面?滑移量是多少?解:在和b轴(或y轴)垂直的方向有c滑移面,滑移量为c/2。【7.37】某金属氧化物属立方晶系,晶体密度为,用射线粉末法(线)测得各衍射线相应的衍射角分别为:,请根据此计算或说明:(a) 确定该金属氧化物晶体的点阵型式;(b) 计算晶胞参数和一个晶胞中的结构基元数;(c) 计算金属原子的相对原子质量。解:本题可仿照8.20,8.21,8.26题将数据处理列表如下:序号118.50.31730.100713111221.50.36650.13431.3344200331.20.51800.26842.6658220437.40.60740.36893.66311311539.40.63470.40294.00112222647.10.73250.53665.32916400754.90.81810.66946.64720420(a) 晶体衍射全奇或全偶,面心立方点阵。(b)在面心立方晶胞中,一个晶胞对应4个点阵点,即包含4个结构基元。(c) 按公式, MO的相对化学式量为40.24,M的相对原子质量为:,该原子应为Mg。【7.38】根绝8.3.2节中第三个离子给出的信息说明或计算:(a) 氟硅酸脲晶体所属的点群;(b) 该晶体所属的空间点阵型式;(d) 该晶体的宏观对称元素及特征对称元素;(e) 该晶体的密度。解:与本题有关的信息为:晶系:四方 空间群:晶胞参数:根据上述信息,可得:(a) 点群:(b) 空间点阵形式:简单四方点阵(c) 宏观对称元素:特征对称元素:(d) 根据化学式,得: 【7.39】丙氨酸与氯铂酸钾反应,形成的晶体(见右下式)属正交晶系,且已知:,;晶胞中包含2个分子,空间群为,一般等效点系数目为4,即每一不对称单位相当于半个分子,。试由此说明该分子在晶体中的构型和点群,并写出结构式。解:因不对称单位相当于半个分子,分子只能坐在二重轴上(该二重轴和b轴平行)。二重轴通过Pt原子(因晶胞中只含有2个Pt),分子呈反式构型(Pt原子按平面四方形成键,2个Cl原子处于对位位置,才能保证有二重轴)。分子的点群为。分子的结构式为:【7.40】二水合草酸晶体所属的空间群为,试写出下列衍射的系统消光条件:(a),(b),(c),(d),(e)。解:(a),无系统消光,因系简单点阵P。(b),无系统消光,因单斜晶系对称面只和b轴垂直。(c),出现十奇数系统消光因为有滑移面和b轴垂直。(d),出现奇数系统消光,这是n滑移面派生的,不是平行轴有螺旋轴。(e),出现奇数系统消光,因平行b轴有螺旋轴。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!