资源描述
2019-2020年高中数学 第二章数列 2.4等比数列第三课时教案 新人教A版必修5授课类型:新授课(第课时)教学目标知识与技能:灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法过程与方法:通过自主探究、合作交流获得对等比数列的性质的认识。情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。教学重点等比中项的理解与应用教学难点灵活应用等比数列定义、通项公式、性质解决一些相关问题教学过程.课题导入首先回忆一下上一节课所学主要内容:1等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q0),即:=q(q0)2.等比数列的通项公式: , 3成等比数列=q(,q0) “0”是数列成等比数列的必要非充分条件4既是等差又是等比数列的数列:非零常数列.讲授新课1等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与b的等比中项. 即G=(a,b同号)如果在a与b中间插入一个数G,使a,G,b成等比数列,则,反之,若G=ab,则,即a,G,b成等比数列。a,G,b成等比数列G=ab(ab0)范例讲解课本P58例4 证明:设数列的首项是,公比为;的首项为,公比为,那么数列的第n项与第n+1项分别为:它是一个与n无关的常数,所以是一个以q1q2为公比的等比数列拓展探究:对于例4中的等比数列与,数列也一定是等比数列吗?探究:设数列与的公比分别为,令,则,所以,数列也一定是等比数列。课本P59的练习4已知数列是等比数列,(1)是否成立?成立吗?为什么?(2)是否成立?你据此能得到什么结论?是否成立?你又能得到什么结论?结论:2等比数列的性质:若m+n=p+k,则在等比数列中,m+n=p+q,有什么关系呢?由定义得: ,则.课堂练习课本P59-60的练习3、5.课时小结1、若m+n=p+q,2、若是项数相同的等比数列,则、也是等比数列.课后作业课本P60习题2.4A组的3、5题板书设计授后记
展开阅读全文