2019-2020年高中数学 《基本不等式》教案6 苏教版必修5.doc

上传人:tian****1990 文档编号:2611629 上传时间:2019-11-28 格式:DOC 页数:3 大小:33KB
返回 下载 相关 举报
2019-2020年高中数学 《基本不等式》教案6 苏教版必修5.doc_第1页
第1页 / 共3页
2019-2020年高中数学 《基本不等式》教案6 苏教版必修5.doc_第2页
第2页 / 共3页
2019-2020年高中数学 《基本不等式》教案6 苏教版必修5.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述
2019-2020年高中数学 基本不等式教案6 苏教版必修5教学目标:1 学会推导并掌握均值不等式定理;2 能够简单应用定理证明不等式并解决一些简单的实际问题。教学重点:均值不等式定理的证明及应用。教学难点:等号成立的条件及解题中的转化技巧。教学过程: 重要不等式:如果a、bR,那么a 2b 2 2ab(当且仅当ab时取“”号)证明:a 2b 22ab(ab)2当ab时,(ab)20,当ab时,(ab)20所以,(ab)20 即a 2b 2 2ab由上面的结论,我们又可得到定理:如果a,b是正数,那么 (当且仅当ab时取“”号)证明:()2()22a b2 即 显然,当且仅当ab时,说明:1)我们称为a,b的算术平均数,称为a,b的几何平均数,因而,此定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数.2)a 2b 22ab和成立的条件是不同的:前者只要求a,b都是实数,而后者要求a,b都是正数.3)“当且仅当”的含义是充要条件.4)数列意义问:a,bR?例题讲解:例1 已知x,y都是正数,求证:(1)如果积xy是定值P,那么当xy时,和xy有最小值2; (2)如果和xy是定值S,那么当xy时,积xy有最大值S2证明:因为x,y都是正数,所以 (1)积xy为定值P时,有 xy2上式当xy时,取“”号,因此,当xy时,和xy有最小值2.(2)和xy为定值S时,有 xy S 2上式当x=y时取“”号,因此,当x=y时,积xy有最大值S 2.说明:此例题反映的是利用均值定理求最值的方法,但应注意三个条件:)函数式中各项必须都是正数;)函数式中含变数的各项的和或积必须是常数;)等号成立条件必须存在。师:接下来,我们通过练习来进一步熟悉均值定理的应用.例2 :已知a、b、c、d都是正数,求证:(abcd)(acbd)4abcd分析:此题要求学生注意与均值不等式定理的“形”上发生联系,从而正确运用,同时加强对均值不等式定理的条件的认识.证明:由a、b、c、d都是正数,得0,0,abcd即(abcd)(acbd)4abcd例3 某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理.解:设水池底面一边的长度为xm,水池的总造价为l元,根据题意,得l240000720(x)2400007202240000720240297600当x,即x40时,l有最小值297600因此,当水池的底面是边长为40m的正方形时,水池的总造价最低,最低总造价是297600元.评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件.为了进一步熟悉均值不等式定理在证明不等式与求函数最值中的应用,我们来进行课堂练习.课本P91练习1,2,3,4.3课堂小结通过本节学习,要求大家掌握两个正数的算术平均数不小于它们的几何平均数的定理,并会应用它证明一些不等式及求函数的最值,但是在应用时,应注意定理的适用条件。4课后作业P94习题 1,2,3教学后记:抓住重点,强调概念,掌握。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!